| MWF 11 AM-11:50 AM | OPL 107 | http://www.wfu.edu/~natalie/f16phy711/ |
| Instructor: Natalie Holzwarth | Phone:758-5510 | Office:300 OPL | e-mail:natalie@wfu.edu |
| Date | F&W Reading | Topic | Assignment | Due | |
| 1 | Wed, 8/31/2016 | Chap. 1 | Review of basic principles | #1 | 9/7/2016 |
| 2 | Fri, 9/02/2016 | Chap. 1 | Scattering theory | #2 | 9/7/2016 |
| Mon, 9/05/2016 | Labor day -- no class | ||||
| 3 | Wed, 9/07/2016 | Chap. 1 | Scattering theory | #3 | 9/9/2016 |
| 4 | Fri, 9/09/2016 | Chap. 1 & 2 | Scattering theory and rotations | #4 | 9/12/2016 |
| 5 | Mon, 9/12/2016 | Chap. 3 | Calculus of variations | #5 | 9/14/2016 |
| 6 | Wed, 9/14/2016 | Chap. 3 | Calculus of variations | #6 | 9/16/2016 |
| 7 | Fri, 9/16/2016 | Chap. 3 | Lagrangian mechanics | #7 | 9/19/2016 |
| 8 | Mon, 9/19/2016 | Chap. 3 and 6 | Lagrangian mechanics and constraints | #8 | 9/21/2016 |
| 9 | Wed, 9/21/2016 | Chap. 3 and 6 | Constants of the motion | #9 | 9/23/2016 |
| 10 | Fri, 9/23/2016 | Chap. 3 and 6 | Hamiltonian and canonical equations of motion | #10 | 9/26/2016 |
| 11 | Mon, 9/26/2016 | Chap. 3 and 6 | Phase space | #11 | 9/28/2016 |
| 12 | Wed, 9/28/2016 | Chap. 6 | Canonical transformations | #12 | 9/30/2016 |
| 13 | Fri, 9/30/2016 | Chap. 4 | Small oscillations | #13 | 10/04/2016 |
| 14 | Tue, 10/04/2016 | Chap. 4 | Normal modes | #14 | 10/07/2016 |
| 15 | Wed, 10/05/2016 | Chap. 7 | Wave motion in one dimension | #15 | 10/07/2016 |
| 16 | Fri, 10/07/2016 | Chap. 7 | Sturm-Liouville equations | ||
| 17 | Mon, 10/10/2016 | Chap. 7 | Sturm-Liouville equations | Take-home exam | |
| 18 | Wed, 10/12/2016 | Chap. 7 | Fourier series and transforms | Take-home exam | |
| 19 | Fri, 10/14/2016 | App. A | Laplace transforms and contour integrals | Take-home exam | |
| 20 | Mon, 10/17/2016 | Chap. 5 | Mechanics of rigid bodies | Exam due | |
| 21 | Wed, 10/19/2016 | Chap. 5 | Mechanics of rigid bodies | #16 | 10/24/2016 |
| Fri, 10/21/2016 | Fall break -- no class | ||||
| 22 | Mon, 10/24/2016 | Chap. 8 | Mechanics of Elastic Membranes | #17 | 10/28/2016 |
| 23 | Wed, 10/26/2016 | Chap. 9 | Introduction to hydrodynamics | i | |
| 24 | Fri, 10/28/2016 | Chap. 9 | Introduction to hydrodynamics | #18 | 10/31/2016 |
| 25 | Mon, 10/31/2016 | Chap. 9 | Sound waves | #19 | 11/02/2016 |
| 26 | Wed, 11/02/2016 | Chap. 9 | Sound waves | #20 | 11/04/2016 |
| 27 | Fri, 11/04/2016 | Chap. 9 | Non-linear sound | #21 | 11/07/2016 |
| 28 | Mon, 11/07/2016 | Chap. 10 | Surface waves in fluids | ||
| 29 | Wed, 11/09/2016 | Chap. 10 | Surface waves in fluids | #22 | 11/11/2016 |
| 30 | Fri, 11/11/2016 | Chap. 11 | Heat conductivity | #23 | 11/14/2016 |
| 31 | Mon, 11/14/2016 | Chap. 12 | Viscous fluids | #24 | 11/16/2016 |
| 32 | Wed, 11/16/2016 | Chap. 12 | Viscous fluids | #25 | 11/18/2016 |
| 33 | Fri, 11/18/2016 | Chap. 12 | Viscous fluids | #26 | 11/21/2016 |
| 34 | Mon, 11/21/2016 | Chap. 13 | Elastic continua | Prepare presentations | |
| Wed, 11/23/2016 | Thanksgiving Holiday -- no class | ||||
| Fri, 11/25/2016 | Thanksgiving Holiday -- no class | ||||
| 35 | Mon, 11/28/2016 | Chap. 13 | Elastic continua | Prepare presentations | |
| 36 | Wed, 11/30/2016 | Math methods | Prepare presentations | ||
| 37 | Fri, 12/02/2016 | Math methods | Prepare presentations | ||
| 38 | Mon, 12/05/2016 | Review | Prepare presentations | ||
| Wed, 12/07/2016 | Presentations I | ||||
| Fri, 12/09/2016 | Presentations II |
|
Read Chapter 1 in Fetter & Walecka.
Continue reading Chapter 1 in Fetter & Walecka.
Finish reading Chapter 1 and start reading Chapter 2 in Fetter & Walecka.
Start reading Chapter 3, especially Section 17, in Fetter & Walecka.
|
|
|
|
Continue reading Chapter 3 in Fetter & Walecka.
|
Continue reading Chapter 3 and also 6 in Fetter & Walecka.
Continue reading Chapter 3 and also 6 in Fetter & Walecka.
Complete the reading of Chapter 6 in Fetter & Walecka.
Start reading Chapter 4 in Fetter & Walecka.
Finish reading Chapter 4 and start Chapter 7 in Fetter & Walecka.
|
|
|
Start Chapter 5 in Fetter & Walecka.
the above figure shows an object with four particles held together with massless bonds at the coordinates shown. The masses of the particles are m1=m2 ≡ 2m and m3=m4 ≡ m.
Read Chap. 8 in Fetter & Walecka.
Continue reading Chapter 9 in Fetter & Walecka.
Continue reading Chapter 9 in Fetter & Walecka.
Continue reading Chapter 9 in Fetter & Walecka.
Continue reading Chapter 9 in Fetter & Walecka.
Continue reading Chapter 10 in Fetter & Walecka.
Start reading Chapter 11 in Fetter & Walecka.
Start reading Chapter 12 in Fetter & Walecka.
Start reading Chapter 12 in Fetter & Walecka.
Continue reading Chapter 12 in Fetter & Walecka.