PHY 711 Classical Mechanics and
Mathematical Methods
9-9:50 AM MWF Olin 107
Plan for Lecture 12:

Continue reading Chapter 3 & 6

1. Hamiltonian formalism

3. Modern applications

2. Phase space & Liouville’s theorem

9/21/2017

13 |Mon, 9252017
14 [Wed, 8272017
15 [Fri, 9282017
Mon, 1000272017
Wed, 10/04/2017 |
(18 Fri, 10082017 |

9/22/2017

-12 Fri, 2202017 Chap. 3 and 6 [Liouville equation

Take-home exam — No class
Take-home exam — No class

PHY 711 Fall 2017 — Lecture 12

9/22/2017 PHY 711 Fall 2017 -- Lecture 12
Course schedule
{Praliminary schedule - subject to frequent adjustment. )
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Hamiltonian formalism
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Phase space

Phase space is defined at the set of all

coordinates and momenta of a system :

(f2, O} {p, )

For a d dimensional system with N particles,

the phase space corresponds to 2dN degrees of freedom.
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Phase space diagram for one-dimensional motion due to
constant force
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Phase space diagram for one-dimensional motion due to
spring force
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Liouville’s Theorem (1838)

The density of representative points in phase
space corresponding to the motion of a system of
particles remains constant during the motion.

Denote the density of particles in phase space: D = D({qg(t)}, {pd(t)},t)

dD oD . oD . oD
== G, +—p, |+—
dt [aqa p, ] ot

. - dD
According to Liouville's theorem : -
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Liouville’s theorem

(x,p+4p) I (x+4x,p+4p)

P % oD
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Liouville’s theorem -- continued I

(x,p+4p) (x+Ax,p+Ap)

P X oD

) ot )

(x,p) 1.,' (x+4x,p)

oD _ . X . .
— = time rate of change of particles within volume

= time rate of particle entering minus particles leaving
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Liouville’s theorem -- continued I
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Review:
Liouville’s theorem:

Imagine a collection of particles obeying the
Canonical equations of motion in phase space.

Let D denote the "distribution" of particles in phase space :
D= D({ql ""13N}’{p1 Pin }’Z)
Liouville's theorm shows that :

D _

7 =0 = Dis constant in time
t
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Proof of Liouville’e theorem:

¢ m) v
Continuity equation :
oD

l ‘ " E=—V~(VD)

Note :in this case, the velocity is the 6N dimensional vector :
v= (i'lvi'27~ ~Fy, PPy pzv)

We also have a 6N dimensional gradient :
V=(V,.V, ...V, Y, .Y, .9, )
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Importance of Liouville’s theorem to statistical
mechanical analysis:

In statistical mechanics, we need to evaluate the
probability of various configurations of particles.
The fact that the density of particles in phase
space is constant in time, implies that each point
in phase space is equally probable and that the
time average of the evolution of a system can be
determined by an average of the system over
phase space volume.
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Modern usage of Lagrangian and Hamiltonian formalisms

J. Chem. Physics 72 2384-2393 (1980)

Molecular dynamics simulations at constant pressure and/or
temperature®
Hans C. Andersen

Department of Chemistry, Stanford University, Stanford, California 94305
(Received 10 July 1979; accepted 31 October 1979)

In the molecular dynamics simulation method for fvids, the equations of motion for a collection of
particles in 3 fixed volume are solved numecicalis. The encrgy, volume, and number of particles arc
constan for a particular simulation, and it is assumed that time averages of properties of the simulated
fluid are equal 1o microcananical ensemble avernges of the same properties. In some situations. it is
desirabie to perform simulations of a fluid for particular values of temperature and/or pressure ot under
conditions in which the energy and voiume of the uid can fluctuate. This paper proposes and discusses
theee methods for performing molecular dynamics simulations under Sonditions of constant temperature
and/or pressure, rather than constant energy and volume. For these three methods, it 1 shown that time
averages of properties of the simolated fluid are equal 1o averages over the isoenthalpic-isoharic,
canonical, and isothermal-isobaric ensembies. Each method is a way of describing the dynamics of @
certain number of particles fn & volume clement of & flvid while taking into account the influence of
surrounding particles in changing the energy and/or density of the simulated volume element. The
influence of the surroundings is taken into account without introducing unwanted surface effects
Examples of situations where these methods may be useful ase discussed.
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“Molecular dynamics” is a subfield of computational
physics focused on analyzing the motions of atoms in
fluids and solids with the goal of relating the atomistic
and macroscopic properties of materials. Ideally
molecular dynamics calculations can numerically
realize the statistical mechanics viewpoint.

Imagine that the generalized coordinates ¢, () represent
N atoms, each with 3 spacial coordinates :

L=1({g, O}, 0h1)=T-U

For simplicity, it is assumed that the potential interaction
is a sum of pairwise interactions :

U{e") = § uiry) . @.1)
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S5
r

: —ZuQr,—rj‘)

i<j

L=L{fr Wi 0f) = Xam
=>From this Lagrangian, can find the 3N coupled
2nd order differential equations of motion and/or
find the corresponding Hamiltonian, representing
the system at constant energy, volume, and
particle number N (N,V,E ensemble).
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Lagrangian and Hamiltonian forms

L=Llfr 0L fO)= Y mfi] - S ulr,-r))

i i<j

I

i

p; =mf,

iti

2

H=Z%+Zuﬂq —rl‘)

i<

Canonical equations :

d ; d , i
L Pl

i i<j T 7";‘
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H. C. Andersen wanted to adapt the formalism for
modeling an (N,V,E) ensemble to one which could
model a system at constant pressure (P).

@p
E>

V constant ﬁ
P constant,
V variable
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PV contribution to

Andersen's clever transformation : potential energy

Letp, =r,/Q"

L=k 0LEO)=D 4m,

.2
r.

i

’ ;uqr, )
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p;

p,—p |+ 140" ~a0

kinetic energy of
“palloon”
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Relationship between system representations

Original

140
r()

P

Equations of motion in “original” coordinates:

‘) 1 dhv

3P T

bl

Physical interpretation:

a < Imposed (target) pressure

izzu,l
V35 m 3

Time dependence

MdV ( Zp, p,77

dt?

u'Qr -r; ‘)j <& Internal pressure of system

S -obele—s)|
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Digression on numerical evaluation of differential equations

Example differential equation (one dimension);

2
X1 Let t=nh (n=123..)

ar
X, x(nh); fnzf(nh)

Euler's method :

X, =X, +hvn+%hzfn

Vou =V, +hf,
Velocity Verlet algorithm :

Xal

= x, Iy, 20,
2

1
Vit =V +Eh(fn +fu+1)
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Example simulation for NPT molecular dynamics
simulation of Li,O using 1500 atoms with 6=0

L e — e == N

L I L ‘\ .ﬁ L. . .
i) Pair interaction potential

LI . T A

T T LR G, 94
L U T R R TR U S T _ ey i i1
TS L uy(n) = dge e+

L L . T Ty

'\ ‘\ .'\. -'\ '\ "\ "\ -\ " "\
Ty m . % %om W o W Use LAMMPS code
"o % % % % % % % % & http://ILAMMPS.sandia.gov

W % % % % % % W% W
LR R T T T T

R R e R e A e

g g gy

9/22/2017 PHY 711 Fall 2017 — Lecture 12 26

0 100 0 300 ano £

92212017 PHY 711 Fall 2017 — Lecture 12 27




MoLECULAR PHysIcs, 1984, VoL. 52, No. 2, 255-268

A molecular dynamics method for simulations in the
canonical ensemblet

by SHUICHI NOSE}

Division of Chemistry, National Research Council Canada,
Ottawa, Ontario, Canada K1A 0R6

(Received 3 October 1983 ; accepted 28 November 1983)

A molecular dynamics simulation method which can generate configura-
tions belonging to the canonical (T, ¥, N) ensemble or the constant
temperature constant pressure (T, P, N) ensemble, is proposed. The
physical system of interest consists of N particles (f degrees of freedom), to
which an external, macroscopic variable and its conjugate momentum are
added. This device allows the total energy of the physical system to
fluctuate. The equilibrium distribution of the energy coincides with the
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Nose"s Lagrangian:

L({r},s5.{i},5) :%Zmiszi'z %Qs‘2 —¢({rD—(f + DT, Ins

velocity scaling fictitious mass

o¢

Equations of motion: d
@ (ms? b)= ==

or;
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Qi= Z‘: msi2— %,
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Time averaged relationships

;m:sz i = (f+1)RT,, <1>

$

Hamiltonian

P P
H1= g t SO+ 55+ (+ DT Ins,
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In statistical mechanics, the thermodynamic functions can be analyzed
in terms of a partition function. A canonical partition function for a system
with NV particles at a temperature 7,, can be determined from the phase space

integral:

_ 1 3N, 3N =I5 L {p KT,
mej‘d rdpe

Nose’ was able to show that his effective Hamiltonian
well approximates such a canonical distribution.
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From LAMMPS simulation (using modified Nose’ algorithm)
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