PHY 741 Quantum Mechanics
12-12:50 PM MWF Olin 103

Plan for Lecture 10:
Review Chapters #5 & 7 in Shankar;
Eigenstates of the one-dimensional
Schrodinger equation

1. Charged particle in an electrostatic field

2. Brief introduction to numerical methods

in the context of the one-dimensional
Schrodinger equation.
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Course schedule

{Prefiminary schedule — subject to frequeent adjustment.)

Date F&W Reading Topic Assignment

1 |Mon, 82872017 [Chap. 1 Review of basic principles 7]

2 [Wed, 8302017 [Chap. 1 Linear vector spaces w2

3 |Fri, 901/2017  Chap. 1 Linear vector spaces #

4 [Mon, 9042017 [Chap, 4 Principles of Quantum Mechanics g

5 |Wed, 9062017 |Chap. § Examgéas in 1 dimensicn

& |Fri 9082017  [Chap, 6 equalion in w5

7 [Maon, 811/2017 [Chap. 5 Schridinger equation In ane-dimension

§ |Wed, 9132017 [Chap. 7 aquation in on 5

9 [Fri. 9152017  [Chap. 7 inger equation in i 7

10 Mon, 818/2017 Chap. 5 and 7 |Schrodinger equation in one-dimension
1 [Wed, 9202017 )

12 |Fri, 8/22/2017

13|Mon, 8252017

14 Wed, 2272017

1§ (Fri. 8/29/2017

Mon, 1000272017 Take-home exam — No ciass
Wed, 100472017 Take-home exam - No ciass
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Energy eigenstates of the Schrodinger equation for one-
dimensional systems

2 2
(—fmsz v V(x)Jy/(x) — Ey(x)

Suppose that the potential is due to an electrostatic field ¥
and the particle has charge g such that V' (x)=gF(x—a):

2 dZ
(* el il a)J'//(X) = Ey(x)
x

V(x)
E

Energy ‘ -
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One dimensional Schrodinger equation for charged

particle in an electrostatic field — continued:

wod
_QE+ qF(x—a) |y (x) = Ey(x)
V(x)
S E
2
w
X
a
Differential equation:
d*  2mqF E
—— x—b x)=0 whereb=a+—
[dxz ¢ ))'//( ) oF
d? 2mgF
—-a =0 hereu=x-b a=
[duz u)l//(u) A u=x e
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Digression — library of solutions to differential equations
http://dimf.nist.gov/
oy af”
iy
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9/18/2017 PHY 741 Fall 2017 - Lecture 10

http://store.doverpublications.com/0486612724.html

9/18/2017 PHY 741 Fall 2017 — Lecture 10




§9.2(i) Airy's Equation

9.2.1 — = IW,

All solutions are entire functions of 2.

Standard solutions are:

9.2.2 w = Ai(z), Bi(z), ai(zeTmi/3),
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Bi(z)
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Differential equation:
2
(%_ZVZE’F(’C—IJ)JW(X):O Whereh5a+q£F

2mqF

du®
Airy's equation

2
(%—z]Ai(z) =0
/2

dZ
(f—aujw(u)zo whereu=x-b

Note that the Schroedinger equation can be multiplied by a constant:

dZ
C[W—aujy/(u) =0
Changing variables: z = Cau

FE I d?
d.

C——= 3
du’ g

=C=a?? ‘\0‘((\ =>z=a"u

=y (u) = Ni(a'"u)
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Some properties of Airy functions —
Integral form: -

Ai(x) = LJ- cos(-; t7+xt) dt.

0

Behavioras z— o
1 2

Ai(z) x ———e 3

2 [”21/4

Behavioras —z—»> o

(2 T

sin| =237+ =

1
\/;21/4 3 4

Ai(-z) =
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Summary of results
Differential equation:

2
[d ZMqF(xfb)]u/(x)=0 wherebzaJriF
q

a7
d? 2mgF
[W—au]u/(u)=0 where u=x—b a= e

w(u) = Ndi(a"*u)
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Introduction to numerical methods of solving the one-dimensional
Schrédinger equation

aonil Schrodinger equation:

Consuder the following one-dimen

his can either repres # hound state o

bunsie: roach to ¢ ping acenrate numerical approximations to the solution of these
equations is to use a Tavlor's series expansion to relate the behavior of — for
points o' in the neighborhood of £ Note that for any small distance s,
. ) din () | & dalx) | stdh, st ety A
PulzE£8) =gz} 8- = - 3 i2)
dr 2 dr 3 e 41!
This means that if s is small, we can approximate the second derivative according to
iy Yl + 5} + 4 — 8).— T (2) ;
+O(s). (3)
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Introduction to numerical methods of solving the one-dimensional
Schrédinger equation -- continued

d* 2m 2m

[E - FV(X)] v, (x) = *hszn% (x)

Simplified example: V' (x)=0
y,(x=0)=y,(x=a)=0

X=Q | X3 X | I || Xns Xw=a

Discretize x into N segments s, with s=a/N.
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Introduction to numerical methods of solving the one-dimensional
Schrédinger equation -- continued

d%y n .LJ.r] . Il +8) + ',,L.Ir #) — 24, () +0(sY):
dz? &
For x values on the grid points x;,, this means that
d’ . 1
V) Ly, 00 49,050 -2, 6)) Fori=12,..N -1
dx* s*
From the Schroedinger equation, we also know that

dy,(x) _2m B
R R (V(x)-E, )y, (x)

For the simplified example,
we thus have a set of N —1 linear equations of the form:

2ms’E,
V0 + 0 (30 = 20, (5) = A (x) where 4, = S
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In this way, our numerical solution is cast in terms of an
eigenvalue problem where the N-71 unknown eigenvector
components are y, (x)

2 -1 0 - 0) w,(x) v, (x)
-1 2 -1 0 w,(x) v, (%)
0 -1 2 01 w,(x) |=4,] w.(x)
0 0 0 2\, (xy2y) v, (xy)
Exact solution for this example:
. i
v, (x)= Csm(@] E, = > n’r’
a 2ma
n2ﬂ,2
Note that for N grid spacings, 4, = Y
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Example for N=7:

[ n ] o | we | E__]
1 0.1980622645 9.7050509605 9.869604401
2 0.7530203960 36.897999404 39.47841760
3 1.554958132  76.192948468 88.82643960
4 2.445041868  119.80705153 157.9136704
5
6

3.246979605  159.10200064 246.7401100
3.801937736  186.29494906 355.3057584
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Convergence of results with respectto N

Numerical results from second-order aiiroximation:

n=1 9.54915028 9.7697954 9.869604404

n=2 34.54915031 37.9008002 39.47841762

Numerical results from Numerov approximation:

n=1 9.863097625 9.869604404

n=2 39.04581620 39.47841762
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More accurate algorithm — Numerov scheme
Recall the Taylor’s expansion

i (i P
Gl 8 = () 5 200 8 i
: dx 21 q

Recall that: 2

_[J'] _ Walx +8) + t'.,(_J_'

dz? 5
The Numerov scheme approximates the 4th derivative:
dy,(x) _dy",(x) p",(x+s)+p",(x—5)-2p", ()
dx* dx’ s?

We also know that each second derivative is constrained by

+0(s%).

the Schroedinger equation:

d’y,(x) _2m
P = SRV () = E, ), (x)




