PHY 741 Quantum Mechanics 12-12:50 PM MWF Olin 103

Plan for Lecture 10:

Review Chapters #5 & 7 in Shankar; Eigenstates of the one-dimensional Schrödinger equation

- 1. Charged particle in an electrostatic field
- 2. Brief introduction to numerical methods in the context of the one-dimensional Schrödinger equation.

9/18/2017

PHY 741 Fall 2017 -- Lecture 10

		(Prelimin	ary schedule subject to frequent adjust	tment.)	
	Date	F&W Reading	Topic	Assignment	Du
1	Mon, 8/28/2017	Chap, 1	Review of basic principles	#1	9/6
2	Wed, 8/30/2017	Chap. 1	Linear vector spaces	#2	9/6
3	Fri, 9/01/2017	Chap. 1	Linear vector spaces	#3	9/6
4	Mon, 9/04/2017	Chap. 4	Principles of Quantum Mechanics	#4	9/8
5	Wed, 9/06/2017	Chap. 5	Examples in 1 dimension		
6	Fri, 9/08/2017	Chap, 5	Schrödinger equation in one-dimension	#5	9/1
7	Mon, 9/11/2017	Chap. 5	Schrödinger equation in one-dimension		
8	Wed, 9/13/2017	Chap. 7	Schrödinger equation in one-dimension	#6	9/1
9	Fri, 9/15/2017	Chap. 7	Schrödinger equation in one-dimension	#7	9/2
10	Mon, 9/18/2017	Chap. 5 and 7	Schrödinger equation in one-dimension		
11	Wed, 9/20/2017				
12	Fri, 9/22/2017				
13	Mon, 9/25/2017				
14	Wed, 9/27/2017				
15	Fri, 9/29/2017				
	Mon, 10/02/2017		Take-home exam - No class		
	Wed, 10/04/2017		Take-home exam No class		

Energy eigenstates of the Schrödinger equation for onedimensional systems

$$\left(-\frac{\hbar^2}{2m}\frac{d^2}{dx^2} + V(x)\right)\psi(x) = E\psi(x)$$

Suppose that the potential is due to an electrostatic field F and the particle has charge q such that V(x) = qF(x-a):

§9.2(i) Airy's Equation

9.2.1

$$\frac{\mathrm{d}^2 w}{\mathrm{d}z^2} = zw.$$

All solutions are entire functions of z.

Standard solutions are:

9.2.2

$$w = Ai(z)$$
, $Bi(z)$, $Ai(ze^{\mp 2\pi i/3})$.

PHY 741 Fall 2017 -- Lecture 10

$$\left(\frac{d^2}{dx^2} - \frac{2mqF}{\hbar^2}(x - b)\right)\psi(x) = 0 \quad \text{where } b \equiv a + \frac{E}{qF}$$

$$\left(\frac{d^2}{du^2} - \alpha u\right)\psi(u) = 0 \quad \text{where } u \equiv x - b \quad \alpha \equiv \frac{2mqF}{\hbar^2}$$

$$\left(\frac{d^2}{du^2} - \alpha u\right)\psi(u) = 0$$

where
$$u = x - b$$
 $\alpha = \frac{2mq}{\hbar^2}$

Airy's equation

$$\left(\frac{d^2}{dz^2} - z\right) Ai(z) = 0$$

Note that the Schroedinger equation can be multiplied by a constant:

$$C\left(\frac{d^2}{du^2} - \alpha u\right)\psi(u) = 0$$

Some properties of Airy functions -

Integral form:

$$\operatorname{Ai}(x) = \frac{1}{\pi} \int_{0}^{\infty} \cos\left(\frac{1}{3}t^{3} + xt\right) dt.$$

Behavior as $z \to \infty$

$$Ai(z) \approx \frac{1}{2\sqrt{\pi}z^{1/4}}e^{-\frac{2}{3}z^{3/2}}$$

Behavior as $-z \rightarrow \infty$

$$Ai(-z) \approx \frac{1}{\sqrt{\pi}z^{1/4}} \sin\left(\frac{2}{3}z^{3/2} + \frac{\pi}{4}\right)$$

9/18/2017

PHY 741 Fall 2017 -- Lecture 10

Summary of results

Differential equation

$$\left(\frac{d^2}{dx^2} - \frac{2mqF}{\hbar^2}(x - b)\right)\psi(x) = 0 \quad \text{where } b \equiv a + \frac{E}{qF}$$

$$\left(\frac{d^2}{du^2} - \alpha u\right)\psi(u) = 0 \qquad \text{where } u \equiv x - b \qquad \alpha \equiv \frac{2mqF}{\hbar^2}$$

 $\psi(u) = \mathcal{N}Ai(\alpha^{1/3}u)$

Introduction to numerical methods of solving the one-dimensional Schrödinger equation

Consider the following one-dimensional Schrödinger equation:

$$\left[-\frac{\hbar^{2}}{2m}\frac{d^{2}}{dx^{2}}+V(x)\right]\psi_{n}(x)=E_{n}\psi_{n}(x),$$
(1)

where V(x) is a given potential function, and E_n is the energy eigenvalue associated with the eigenfunction $\psi_n(x)$. This can either represent a bound state or a continuum state. One basic approach to developing accurate numerical approximations to the solution of these equations is to use a Taylor's series expansion to relate the behavior of $\frac{d^2 \omega_n(x)}{dx^2}$ to $\psi_n(x')$ for points x' in the neighborhood of x. Note that for any small distance s,

$$\psi_n(x\pm s) = \psi_n(x) \pm s \frac{d\psi_n(x)}{dx} + \frac{s^2}{2!} \frac{d^2\psi_n(x)}{dx^2} \pm \frac{s^3}{3!} \frac{d^3\psi_n(x)}{dx^3} + \frac{s^4}{4!} \frac{d^4\psi_n(x)}{dx^4} \dots \tag{2}$$

This means that if s is small, we can approximate the second derivative according to

$$\frac{d^2\psi_n(x)}{dx^2} \approx \frac{\psi_n(x+s) + \psi_n(x-s) - 2\psi_n(x)}{s^2} + O(s^4). \quad (3)$$

9/18/2017

Introduction to numerical methods of solving the one-dimensional Schrödinger equation -- continued

$$\left(\frac{d^2}{dx^2} - \frac{2m}{\hbar^2}V(x)\right)\psi_n(x) = -\frac{2m}{\hbar^2}E_n\psi_n(x)$$

Simplified example: V(x) = 0

$$\psi_n(x=0) = \psi_n(x=a) = 0$$

Discretize x into N segments s, with s=a/N.

PHY 741 Fall 2017 -- Lecture 10

Introduction to numerical methods of solving the one-dimensional Schrödinger equation -- continued

$$\frac{d^2\psi_n(x)}{dx^2}\approx \frac{\psi_n(x+s)+\psi_n(x-s)-2\psi_n(x)}{s^2}+O(s^4).$$
 For x values on the grid points x_i , this means that

$$\frac{d^2 \psi_n(x_i)}{dx^2} \approx \frac{1}{s^2} \left(\psi_n(x_{i+1}) + \psi_n(x_{i-1}) - 2\psi_n(x_i) \right) \quad \text{for } i = 1, 2, ... N - 1$$

From the Schroedinger equation, we also know that

$$\frac{d^2\psi_n(x_i)}{dx^2} = \frac{2m}{\hbar^2} (V(x_i) - E_n) \psi_n(x_i)$$

For the simplified example,

we thus have a set of N-1 linear equations of the form:

$$\psi_n(x_{i+1}) + \psi_n(x_{i-1}) - 2\psi_n(x_i) = -\lambda_n \psi_n(x_i)$$
 where $\lambda_n = \frac{2ms^2 E_n}{\hbar^2}$

In this way, our numerical solution is cast in terms of an eigenvalue problem where the N-1 unknown eigenvector components are $\psi_n(x_i)$

$$\begin{pmatrix} 2 & -1 & 0 & \cdots & 0 \\ -1 & 2 & -1 & \cdots & 0 \\ 0 & -1 & 2 & \cdots & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & \cdots & 2 \end{pmatrix} \begin{pmatrix} \psi_n(x_1) \\ \psi_n(x_2) \\ \psi_n(x_3) \\ \vdots \\ \psi_n(x_{N-1}) \end{pmatrix} = \lambda_n \begin{pmatrix} \psi_n(x_1) \\ \psi_n(x_2) \\ \psi_n(x_3) \\ \vdots \\ \psi_n(x_{N-1}) \end{pmatrix}$$

Exact solution for this example:

$$\psi_n(x) = C\sin\left(\frac{n\pi x}{a}\right)$$
 $E_n = \frac{\hbar^2}{2ma^2}n^2\pi^2$

Note that for N grid spacings, $\lambda_n = \frac{n^2 \pi^2}{N^2}$

n \(\lambda\) \(\lambda\)s ² E _{\(\lambda\)} 1 0.1980622645 9.7050509605 9.869604401 2 0.7530203960 36.897999404 39.47841760 3 1.554958132 76.192948468 88.82643960 4 2.445041868 119.80705153 157.9136704 5 3.246979605 159.10200064 246.7401100 6 3.801937736 186.29494906 355.3057584	Example for N=7:					
1 0.1980622645 9.7050509605 9.869604401 2 0.7530203960 36.897999404 39.47841760 3 1.554958132 76.192948468 88.82643960 4 2.445041868 119.80705153 157.9136704 5 3.246979605 159.10200064 246.7401100						
2 0.7530203960 36.897999404 39.47841760 3 1.554958132 76.192948468 88.82643960 4 2.445041868 119.80705153 157.9136704 5 3.246979605 159.10200064 246.7401100		n	λ	λ/s²	E₀	
3 1.554958132 76.192948468 88.82643960 4 2.445041868 119.80705153 157.9136704 5 3.246979605 159.10200064 246.7401100		1	0.1980622645	9.7050509605	9.869604401	
4 2.445041868 119.80705153 157.9136704 5 3.246979605 159.10200064 246.7401100		2	0.7530203960	36.897999404	39.47841760	
5 3.246979605 159.10200064 246.7401100		3	1.554958132	76.192948468	88.82643960	
		4	2.445041868	119.80705153	157.9136704	
6 3.801937736 186.29494906 355.3057584		5	3.246979605	159.10200064	246.7401100	
		6	3.801937736	186.29494906	355.3057584	
	9/18/2017		PHY 74	1 Fall 2017 Lecture 1	0	

Convergence of results with respect to N

Numerical results from second-order approximation:

	N=4	N=8	Exact
n=1	9.54915028	9.7697954	9.869604404
n=2	34.54915031	37.9008002	39.47841762

Numerical results from Numerov approximation:

	N=4	Exact
n=1	9.863097625	9.869604404
n=2	39.04581620	39.47841762

9/18/2017 PHY 741 Fall 2017 -- Lecture 10

More accurate algorithm – Numerov scheme Recall the Taylor's expansion

$$\psi_n(x\pm s) = \psi_n(x) \pm s \frac{d\psi_n(x)}{dx} + \frac{s^2}{2!} \frac{d^2\psi_n(x)}{dx^2} \pm \frac{s^3}{3!} \frac{d^3\psi_n(x)}{dx^3} + \frac{s^4}{4!} \frac{d^4\psi_n(x)}{dx^4} \dots$$

Recall that: $\frac{d^2\psi_n(x)}{dx^2}\approx \frac{\psi_n(x+s)+\psi_n(x-s)-2\psi_n(x)}{s^2}+O(s^4).$

The Numerov scheme approximates the 4th derivative:

$$\frac{d^4 \psi_n(x)}{dx^4} = \frac{d^2 \psi''_n(x)}{dx^2} \approx \frac{\psi''_n(x+s) + \psi''_n(x-s) - 2\psi''_n(x)}{s^2} + O(s^6).$$

We also know that each second derivative is constrained by the Schroedinger equation:

$$\frac{d^2\psi_n(x_i)}{dx^2} = \frac{2m}{\hbar^2} \Big(V(x_i) - E_n \Big) \psi_n(x_i)$$

9/18/2017