PHY 712 Quantum Mechanics
12-12:50 PM MWF Olin 103

Plan for Lecture 4:
Reading: Skim chapters #2 & #3 and
start reading #4 in Shankar

1. Mathematical formalisms that can
represent quantum phenomena

2. State vector

3. Physical variables and their
representations
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PHY 741 Quantum Mechanics
MWF 12 PM - 12:50 PM|/OPL 103 hritp:fwwwowfu.edul-natalle/i17phy 741}

Instructor: Natalie Holzwarth Phone:758-5510 Office:300 OFL e-mali:nataliefwiu. edu

Course schedule

(Preliminary schedue — subject ta fraquent adjustment.)

Date F&W Reading Tople Assignment Due
1 |Mon, B28/2017 Chap. 1 Review of basic principles &1 62017
2 'Wed, 8302017 Chap. 1 Linear vector spaces =2 QBZ01T
3 [Fri, 001/2017  (Chap, 1 Linear vecter spaces 3 962017
» 4 |Mon. 2042017 Chap. 4 Principles of Quantum Mechanics 4 W27
B [Wed, Q062017
& |Fri, 9/08/72017
7 Mon, 81112017
8 [Wed, 813/2017
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Properties of the Dirac delta function
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Properties of the Dirac delta function -- continued
j G(X)S(f (x))dx = IG(x)é(f(x))—;dx
f G oYU @) 4 yot) G(x )

i df / dx
dx

J(x)=0
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Properties of the Dirac delta function -- continued

T G(x)o'(x)dx = _@

Details:
G 1]
IG( )da(x) I (x) (), IdG(x)

i

=0 provided that
G() is well-behaved

S(x)dx

Note: Shankar has minus sign issue....
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Material to skim:

Review of Classical Mechanics

In this chapter we will develop the Lagrangian and Hamiltonian formulations of
‘mechanics starting from Newton's laws. These subsequent reformulations of mechan-
ics bring with them a great deal of elegance and computational ease. But our principal
interest in them stems from the fact that they are the ideal springboards from which
to make the leap to quantum mechanics. The passage from the Lagrangian formula-
tion to quantum mechanics was carried out by Feynman in this path integral formal-
ism. A more common route to quantum mechanics, which we will follow for the
most part, has as its starting point the Hamiltonian formulation, and it was dis-
covered mainly by Schrodinger, Heisenberg, Dirac, and Born.

It should be emphasized, and it will soon become apparent, that all three formu-
lations of mechanics are essentially the same theory, in that their domains of validity
and predictions are identical. Nonetheless, in a given context, one or the other may
be more inviting for conceptual, computational, or simply aesthetic reasons.

2.1. The Principle of Least Action and Lagrangian Mechanics
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Material to skim:

All Is Not Well with
Classical Mechanics

1t was mentioned in the Prelude that as we keep expanding our domain of observa-
tions we must constantly check to see if the existing laws of physics continue to
explain the new phenomena, and that, if they do not, we must try to find new laws
that do. In this chapter you will get acquainted with experiments that betray the
inadequacy of the classical scheme. The experiments to be described were never
performed exactly as described here, but they contain the essential features of the
actual experiments that were performed (in the first quarter of this century) with
none of their inessential complications.

3.1. Particles and Waves in Classical Physics
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Start reading Chapter 4 in Shankar
Mathematical formalisms that can
describe quantum phenomena --

Classical Mechanics Quantum Mechanics
The state of a particle at any given 1. The state of the particle is represen-
time is specified by the two variables ted by a vector |y(¢)) in a Hilbert
x(f) and p(1), i.e., as a point in a two- space.

dimensional phase space.
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Classical Mechanics

II. Every dynamical variable o is a
function of x and p: ® = w(x, p).
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Quantum Mechanics

II. The independent variables x and p of
classical mechanics are represented
by Hermitian operators X and P
with the following matrix elements
in the eigenbasis of X}

x| X|x"y=x6(x—x")
(x| PIx'y=—ik6"(x—X')
The operators corresponding to
dependent variables (x,p) are

given Hermitian operators

QX, P)=w(x—-X, p—>P8

Classical Mechanics

IIL. If the particle is in a state given by
x and p, the measurement| of the
variable o will yield a value w(x, p).
The state will remain unaffected.
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Quantum Mechanics

II1. If the particle is in a state | ), meas-
urement' of the variable (corre-
sponding to) Q will yield one of the
eigenvalues ® with probability
P(w)oc|{w|w)|>. The state of the
system will change from |y ) to |®)
as a result of the measurement.
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Classical Mechanics

IV. The state variables change with time
according to Hamilton’s equations:

. 0K L d
X=— ifi—|y(0))=Hly(1)>
ap dr
_0;#’ where H(X, P)=#(x—X, p—P) is
T ox the quantum Hamiltonian operator
and # is the Hamiltonian for the
corresponding classical problem.
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Quantum Mechanics

IV. The state vector |y(r)) obeys the
Schrodinger equation




Expectation values

For an operator O and a system in a state ‘1//) :

(0)=(v[Olw)

Uncertainty values

For an operator O and a system in a state ‘y/) :

(20)=(w|(0-(0)) )
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Consider the following example of the four 2-dimensional operators:

0 1 0 —i -1 0 , (30
o= o, = o, = o=
1o T\i 0 Lo 1 0 3

Eigenvectors of o, and o :

) )

Expectation values:
wlolv)=0 (wlolm)=0 (lolp)=-1 (nlo*lw.)=
rlodvn) =0 (prlolvr) =0 (wslorfyr)=+1 " (pr|o”lyr) =

GX

o,

Uncertainty values:

3
3
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(wilao )=t (y|ac|v)=1 (v |ac|y)=0 (p|ac*|y,)=0
(pr[aofun)=1 (w[ac,|yi)=1 (wi|ac.fy;)=0  (v:|ac?|y:)=
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Further considerations --
Consider the following example of the four 2-dimensional operators:
0 1 0 —i -1 0 , (30
o, = o, = . o, = o =
o A 0 1 0 3
Eigenvectors of o :
=L vt
'//;1_\/5_1 V/;z_ﬁl
Expectation values:
Walodva)=-1 (walolv.)=0 (walo.lv.)=0 (valo’lw.)=3
<'//r2‘o—r‘u/,\2>=+l <W,\2‘U)"//r2>=0 <W,\2‘o—z‘u/r2>=0 <V/,\2‘O—Z‘V/,\z>=3
Uncertainty values:
Waldolva)=0 (palaolv.)=1 (yalacly)=1 (va|ac|y,)=0
=0

<WrZ‘A0-,\‘VIrZ>:O <'//A2‘AU,-"//A2>:1 <I/IYZ‘AO-Z‘I/IYZ>:1 <V/A2‘A0_2"/ﬁz>
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Time evolution
Suppose that the Hamiltonian for this system has the form:

-B 0
H=0B= where B is a constant
0 B
Schroedinger equation:

d
ih— -H
ih—{w () = Hly (1))
. 1 1
Note that if |y (z = 0)) :‘%) :[0], then |p (1) :elum[oj

. 0 [0
N°‘°‘ha“fW<f:0)>:\w>:(1]’ then [y/(1)) =e"(1]

1 iBt/h
Note that if |y (¢ = 0)) = %[1] then |p (1)) =i2[ iW]
e
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Time evolution -- continued

Note that if |y (r=0)) = |y, ) = ! then  |p(1)) =¢™" 1
Y=o ) 0
= (H)=(y0|Bly©)=-B
. 0 (O
Note that if ‘W(I=0)>=‘WT>=[1J’ then |y/(r)) =e ™ ,[1]
= (H)=(yw|H|y@)=B

Note that if |y (¢ = 0)) = —\% G] then [y/() =*1ﬁ2 [ ei,mj
e
=(H)=(w®|H|y®)=0
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Time evolution -- continued

Note that if |y (¢ = 0)) =|y, ) = [(l)j, then  |y(1)) =" [(l)j

=(0,)=(vOo.w®)=0
. O —iBt/h O
Note that if ‘W(I=0)>=‘VIT>=[1J, then |y(1)) =e™ [1]

o lv)=0

O-)

=(0,)=(y®)
Note that if ‘W(t:())):L(l] then [y(0) :i[ S j
ﬁ 1) ﬁ o B
=(0.)=(vOo.|w(®)=cos(2B /1)

O-r
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Other examples

Suppose we have a state vector which is a continuous
function of x:

1 2 oA
w(x)) = - o= 121
lw () )
<x>=<w(x)‘x‘w(x)>= ( 1 jxe—(xfa)z,‘.«z)d,(:a

ﬁAZ)‘ e

) ) | S . A
<x >:<'//(x)‘x ‘V/(X»Z 172 J‘xei“i“)’( ldx=a +7

(ﬂAz) pey

()= ()= =
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P() = — g )
1/2
(=)
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2
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0
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x
Example continued
"//(x)> = ! /4 ei(ka)z o
(=)
Expectation value and uncertainty of momentum
d
(P) =y @ ply )=y ] -ih—|y () =0
(7= | P ly ) = ] -7 Loy () =2
dx’ 2A°
Y ISR
(ap)=y(2*)=(p) = 51
Note that:
A h _h
Ax = _ - =
(anlar)=Z7r=7




