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Notes on numerical solutions of Schrodinger equation

Consider the following one-dimensional Schrédinger equation:
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where V(z) is a given potential function, and F,, is the energy eigenvalue associated with
the eigenfunction 1, (z). This can either represent a bound state or a continuum state. One
basic approach to developing accurate numerical approximations to the solution of these

equations is to use a Taylor’s series expansion to relate the behavior of % to 1, (") for
points 2’ in the neighborhood of x. Note that for any small distance s,
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This means that if s is small, we can approximate the second derivative according to

d2wn(x) ~ Vn (T +5) + (2 — 5) — 29, (2)
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This central difference approximation can be used to solve both bound state and scattering
state solutions of the Schrodinger equation 1. For an an example suppose the we have a
bound state problem with the boundary conditions v,,(0) = ¥, (X) = 0 We then divide the
interval 0 < x < X into equal intervals with X = (N + 1)s and with N interior points.

Then we can use Eq. (3) to replace the kinetic energy operator. The Schrodinger Equation
then takes the form of a tri-diagonal eigenvalue problem:

Mv, = \,v,, (4)
where
bl C1 0 0
asg b2 Cy 0o ..
M = 0 as bg Cc3 .. . (5)
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The diagonal elements are b; = 2 + s2[2mV (is)/h?] and the off-diagonal elements are a; =
¢; = —1. Here it is assumed that X is divided into N intervals with X = (N + 1)s. v,
represents a vector of N coefficients {t¢,(is)}, with ¢ = 1,2,3...N. The energy eigenvalues

are given by \, = s?[2mFE, /h*]. One can show that the error of this numerical procedure is
of order O(s*)™(x)).



By keeping the next even term in the Taylor series expansion, one can derive a Numerov
algorithm for this problem which takes the form:

Mwv,, = \,Sv,. (6)

Here M is a tridiagonal matrix having the same form as above, and S is a positive definite
tridiagonal matrix having the form:

Bi m 0 0
ag P2 2 0 .

S = 0 (6% 53 Y3 - . (7)
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In this expression, 8; = 10/12 and «; = 7 = 1/12, while b; = 2 + 12s[2mV (is) /h?],

= -1+ L?2mV((i — 1)s)/h%), and ¢; = —1 + 5s*[2mV((i + 1) )/h%] One can show
that the error of this numerical procedure is of order O(s%)V(z)).

For the case of a spherical atom, the wavefunction is assumed to take the form

Wn(r) = Py ), ®)

where the radial function p,,(r) is determined by solving the radial Schédinger equation,
which (dropping the nl indices can be written:

T — Ay p(r), )
where
A =" 2 i -y, (10)

Rather than solving the equation in matrix form as described above, it is generally found to
be more efficient to solve for each eigenvalue E iteratively, using the Numerov algorithm to
integrate inward and outward and matching at an intermediate point r,,. For this purpose,
we can denote P; = P(is). The recursion formula is given by
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Py = <—(1 - TAi—l)Pi—l + (2 + 12Ai)Pi> /(1= —Ai). (11)
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For any given energy iteration, the correction to the energy eigenvalue can be estimated from
the mismatch in the slope at the matching point:

L (o)
AE-(TJ —’"J ) (12)
N P in P out

N = / (r)/ P (1) |2 e dr +/ P(rp)|2.dr. (13)

where



