PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF Olin 103
Plan for Lecture 12:

Continue reading Chapter 3 & 6
1. Hamiltonian formalism
2. Phase space & Liouville’s theorem

3. Modern applications
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Course schedule

{Preliminary schedule - subject to frequent adjustment. )

am

Date F&W Reading Topic Assignment Due
1 |Mon, 82772018 Chap. 1 Introduction &1 ATI2018
Wed, 8/29/2018 Mo class
2 |Fn, 873172018 [(Chap. 1 Scattering theory w2 72018
3 |Mon, 9032018 [Chap. 1 Scattering theary
4 Wed, 9/05/2018 [Chap. 1 Scatlering theary @3 9102018
5 |Fri, 9/07/2018 Chap.2 Mon-inertial coordinate systems G4 22018
6 Mon, 10v2018 Chap. 3 Calculus of Vaniation "5 W12r2018
T Wed, 31272018 Chap. 3 Calculus of Variation #6 172018
Fri, 8/14/2018 |No class University closed due to weather.
8 Mon, 91772018 Chap. 3 Lagrangian Mechanics #7 192018
9 Wed, 9192018 Chap. 3 and & Lagrang and 8 2472018
10 Fri, 921/2018 Chap. 3 and & (Constants of the mobton
11 Mon, %24/2018 Chap. 3 and 6 Hamiltonian formalism =9 d282018
» 12 Wed, 9/26/2018 Chap. 3 and & |Liouville theorem #10 107372018

13 Fri, %/28/2018 Chap. 3 and 6 Canonical transformations
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PHY 711 -- Assignment #10

Sepl. 25, 2018
Continue reading Chapters 3 and 6 in Fetter & Walecka
1. Choose one of the papers distributed in class, by H. C. Andersen or by 5. Nese' and derive to your

salisfaction the Euler-Lagrange of motion, the , and the |
of motion for the constant pressure of constant temperature simulations, respectively.
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Hamiltonian formalism

H =H({a, ®}{p,O}1)

Canonical equations of motion

dg, oH

dt  op,
dp, oH
dt  aq,
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Phase space

Phase space is defined at the set of all

coordinates and momenta of a system :

(fa, ®} {p, ®)

For a d dimensional system with N particles,

the phase space corresponds to 2dN degrees of freedom.

Liouville’s Theorem (1838)

The density of representative points in phase
space corresponding to the motion of a system of
particles remains constant during the motion.

Denote the density of particles in phase space: D = D({q(T (t)}, {p(, (’[)},t)

dD oD . oD, ) D
= Ay +—P, |[+—
dat < aa, op, ot

According to Liouville's theorem : C:j[t) =0




dD _

dt
Importance of Liouville’s theorem to statistical
mechanical analysis:

0

In statistical mechanics, we need to evaluate the
probability of various configurations of particles.
The fact that the density of particles in phase
space is constant in time, implies that each point
in phase space is equally probable and that the
time average of the evolution of a system can be
determined by an average of the system over
phase space volume.
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Modern usage of Lagrangian and Hamiltonian formalisms

J. Chem. Physics 72 2384-2393 (1980)

Molecutar dynamics simulations at constant pressure and/or
temperature®
Hans C. Andersen

Depastimeni af Chemismry, Stanfard Uniowrsity, Stanfant, Calgfarnis #4303
(Recervas 10 July 1979, acerpted 31 Cictober 1973

10 the moleceber dysamics umalsticn mechod for fuids, the opuaticns of motion for 3 cullntis of
pacticics in & fised valume are sobved sumaricuiy. The eatrpy, vobame, acd number of pariches are
comtasd for @ pasticulas srwelation, sad b asmed fhat sme svetages of pcperties of the simslaind
Pkl ate cgusl b Erocinonical ceaemble aversges of the same properties be soms ueaien &
derabie 55 perform Emutatices of & G fior partcular valees of temperature sad/or proute of inder
conditions ia which the caerpy und volsme of the Bed can Mustiale. This paper progoses and dncoam
shree mathods v pesforming mobeculas dynemics ymalseioe under condlines of constan \omperaturs
andior pressere, tathar thin conviant energy and vobsme For tbese three methads, i m sbown had s
averages of propertan of the mealated flukd wre cqmd 85 sveruge over the iomibecsobaric,
canonisal, and iscthermal soharic marmbie. Each method i 8 way of deacebing e dyname of &
cereain e of partiches i 8 volume chement of  fukd whilk tahing tee acooen the influcecs of
urrousdimg paniles in chasging the sergy ndd/or denaity of the simalsied volsme cirmn The
iefuence of the varmsundings ia lahen o accocat without miroducmg wwanied sarface eflects
Examples of stuations where (hess wor thads say be wseful are dicssied.
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“Molecular dynamics” is a subfield of computational
physics focused on analyzing the motions of atoms in
fluids and solids with the goal of relating the atomistic
and macroscopic properties of materials. Ideally
molecular dynamics calculations can numerically
realize the statistical mechanics viewpoint.

Imagine that the generalized coordinates (|, (t) represent
N atoms, each with 3 spacial coordinates :
L=L({,Ok{g, ®})=T-U

For simplicity, it is assumed that the potential interaction
is a sum of pairwise interactions :

U= E ulry) . (2.1
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S5
Cd

L= L) 0D = m i - Sulr )

i i<j

=>From this Lagrangian, can find the 3N coupled
2 order differential equations of motion and/or
find the corresponding Hamiltonian, representing
the system at constant energy, volume, and
particle number N (N,V,E ensemble).
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Lagrangian and Hamiltonian forms
L= L({ri (t)}, {fi (t)}): z%mi‘fi ‘2 *Zuqri 7rj‘)
i i<j

p; =M,

2
H :Z%+;uQn —rj‘)

Canonical equations :

dr; _P m__ N
d@m, dt i;u qri rj‘)‘r:*ri‘
or25/2018 PHY 711 Fall 2016 - Lecture 12

H. C. Andersen wanted to adapt the formalism for
modeling an (N,V,E) ensemble to one which could
model a system at constant pressure (P).

L
/ a’

@p
=)
V constant ﬁ
P constant,
V variable




PV contribution to

Andersen's clever transformation : potential energy

Letp, =r,/Q"?

L= Llin(} s 0) = omef ~Sulr-r)

i<j

= U0} 19,0},0.0)=0" T imo - (Q o, )+2MO* —aQ

kinetic energy of
“balloon”

9/26/2018

L=t} 0}0.0)= Q" X i - (Q'”\p. D+4MQ —aQ
m =%=mQZ/3ﬂi
oL .
H:%:MQ
= s n
ZZsza 5 (Q ‘P, ‘)+N+O’Q
doi __ = do_I
dt  mQ* d M
%=7 113 (0" — Pi—P;
i Zu (Q"n, p,\)ri_ ]
dI1 T 13
at 3Q22r‘n(‘}“ 3sz (Q ‘P. mplfpj‘fa

Relationship between system representations

Scaled Original
Q) = Vi)
Q) = =nlt)
T Q" = Pi

Equations of motion in “original” coordinates:

di, _p; 1 dnV

gt m 3" dt
I

ey %

dt =i ‘

M — g+ 2N Ribi
a+V(SZ m 35"

dt?

ol
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Physical interpretation:

a < Imposed (target) pressure

\%[%z% 7%Z‘ri -1 ‘U'Qri - ‘)j <> Internal pressure of system
i i j<i

Time dependence

dv_ 1(2¢pip 1 B
M~ “+v[3z m, 3%‘“ ’i

“’qri *ri‘)]
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Digression on numerical evaluation of differential equations

Example differential equation (one dimension);
d*x

i =f(t) Let t=nh (n=123...)

x, =x(nh),  f, = f(nh)
Euler's method :

Xou = X, + NV, +%hz f,
Yy =V, +1,
Velocity Verlet algorithm :
Xou = X, +hV, 4—%h2fn

n+1

Voo =+ 4 ,)
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Example simulation for NPT molecular dynamics
simulation of Li,O using 1500 atoms with 6=0

LI S . T T T S TR SR SR
S S U T N T o . .
“ %% %o % % % % % % Pair interaction potential
-, R N % N R %W WY % OR N
T T C. a4
5/ pi
“h.\ "‘!-.“h -'\ -‘\ -"\ -'\ ‘\ l‘\ ‘\ u”(r):AJeu /"u_ 2+ 1)
L T T R U U U U U TR U Y ij rij

.“\ '\ ‘\. ‘\ “\. -\ -\ -\ 'q. '\
l\ l\ L\ l\ l\ l\ lﬁ. l\ l\ ‘\ Use LAMMPS code
"', n s s w w w & hitp/LAMMPS.sandia.gov

r
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MovecuLar Puysics, 1984, VoL, 52, No, 2, 255-268

A molecular dynamics method for simulations in the
canonical ensemblet

by SHUICHI NOSEL

Division of Chemistry, National Research Council Canada,
Ottawa, Ontario, Canada K1A 0R6

{Received 3 October 1983 ; accepted 28 November 1983)

A molecular dynamics simulation method which can generate eanfigura-
tions belonging to the canonical (T, ¥, N) ensemble or the constant
temperature constant pressure (T, P, N) ensemble, is proposed. The
physical system of interest consists of N particles (f degrees of freedom), 1o
which an external, macroscopic variable and its conjugate momentum are
added. This device allows the total encrgy of the physical system o
fluctuate. The equilibrium distribution of the energy coincides with the
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E

Nose"s Lagrangian:

L({ri}’s’{ti}’s) = %Zmiszfz +%QSZ _¢({ri })_(f + KT, Ins

velocity scaling fictitious mass

quations of motion: d a4
— (ms® k)= — —
& (me k==,

fm L 06 2
! mstor, 5 ¢

Qi=§ mst2— .
T
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Time averaged relationships

( z m;’! F‘2> =(f+ I)kT,q-<1‘>

Hamiltonian

2 2
#,= );2?(’,+¢{r)+2-°—é+u+1}k7‘,, Ins,
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In statistical mechanics, the thermodynamic functions can be analyzed
in terms of a partition function. A canonical partition function for a system
with N particles at a temperature T, can be determined from the phase space

integral:

z :LJ‘der a p efft({r‘HP-}) KTeq
N!

Nose’ was able to show that his effective Hamiltonian
well approximates such a canonical distribution.
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From LAMMPS simulation (using modified Nose’ algorithm)

0 [ T
2dat'u 3
323 |
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