PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF Olin 103

Plan for Lecture 19:
Read Chapter 7 & Appendices A-D

Generalization of the one dimensional wave equation 2
various mathematical problems and techniques including:
1. Sturm-Liouville equations
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2. Eigenvalues; orthogonal function expansions
3. Green’s functions methods
4. Laplace transformation
5. Contour integration methods
PHY 711 Fall 2018 ~ Lecture 19
Date [F&W Reading Topic i Due
1 Mon, 8/27/2018 |Chap. 1 Introduction #1 9/7/2018
Wed, 8/29/2018 |No class
2 |Fri, 8/31/2018  [Chap. 1 Scattering theory #2 9/7/2018
3 |Mon, 9/03/2018 |Chap. 1 Scattering theory
4 |Wed, 9/05/2018 |Chap. 1 Scattering theory #3 9/10/2018
5 |Fri, 9/07/2018  [Chap. 2 Non-inertial coordinate systems M 9/12/2018
6 |Mon, 9/10/2018 |Chap. 3 Calculus of Variation @ 9/12/2018
7 Wed, 9/12/2018 |Chap. 3 Calculus of Variation #6 9/17/2018
Fri, 9/14/2018 No class University closed due to weather.
8 Mon, 9/17/2018 |Chap. 3 Lagrangian Mechanics #7 9/19/2018
9 Wed, 9/19/2018 |Chap.3and 6 |L ! and #8 9/24/2018
10 Fri, 9/21/2018  |Chap. 3 and 6 |Constants of the motion \
11 Mon, 9/24/2018 |Chap. 3 and 6 |Hamiltonian formalism [#9 9/28/2018
12 Wed, 9/26/2018 |Chap. 3 and 6 |Liouville theorem #10 10/3/2018
13[Fri, 9/28/2018  [Chap. 3 and 6 |Canonical transformations
14|Mon, 10/1/2018 |Chap. 4 Small oscillations about equilibrium ~ #11 10/5/2018
15 Wed, 10/3/2018 |Chap. 4 Normal modes of vibration
16 |Fri, 10/5/2018  |Chap. 1-4,6 |Review
17 |Mon, 10/8/2018 |Chap. 7 Strings
18 |Wed, 10/10/2018 [Chap. 7 |Wave equation
Fri, 10/12/2018 |No class Fall break
» 19 |Mon, 10/15/2018 Chap. 7 \Wave equation
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Remember:

Mid term exam due tomorrow (Tuesday) --
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Eigenvalues and eigenfunctions of Sturm-Liouville equations

In the domain a<x<b:
) ) |0 = Ao @0
X dx

Properties:

Eigenvalues A, are real

Eigenfunctions are orthogonal: J‘b o(x)f,(x)f,(x)dx=6,,N,,

where N, EI:J(X)(f;I(X))de.

Variation approximation to lowest eigenvalue
In general, there are several techniques to determine the
eigenvalues 4, and eigenfunctions f,(x). When it is not
possible to find the ““exact" functions, there are several
powerful approximation techniques. For example, the
lowest eigenvalue can be approximated by minimizing the

function ARA d d
;{0 < <?|S|}i> ’ S(x)= —Er(x)$+v(x)
(holh)

where #(x) is a variable function which satisfies the
correct boundary values.  The ““proof" of this inequality is
based on the notion that/(x) can in principle be expanded
in terms of the (unknown) exact eigenfunctions f,(x):
h(x)= ZCnf”(x), where the coefficients C, can be

assumed to be real.
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Estimation of the lowest eigenvalue — continued:

From the eigenfunction equation, we know that
S()h(x)=S(x).C, 1, (x) =D .C,2,0(x)f, ().

It follows that:
(h|s|R) = [ A0)S@h(x)dx =Y IC, P N,4,.
It also follows that: ’

(Blolh)= [ heoo(htods =X C, P N,

<;;‘S‘;;> >IC,FN,A,
Therefore ———-

=
9
=
I
:M’
a
=
O§;
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Rayleigh-Ritz method of estimating the lowest eigenvalue

= lijoli)

Example: - jx—zzﬂ,(x) =A,/,(x) withf (0)=f (a)=0

trial function £ (x) = x(x —a)

2
Exact value of 4, = ”—Z 9869604404
a

2

a

dl
X(Q—X)— 3 X(ll—X)
Raleigh-Ritz estimate: % = 2
<x(a 7x)‘x(a7x)> a
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Rayleigh-Ritz method of estimating the lowest eigenvalue

(i[s|i)
So=——=vs
<h\o\h>
Example: 4 /o) L«f’ﬁ") FGPf,(0) = A, f,(x)  withf,(—0) = f,(0) =0
X
trial function f,(x)=e®
o () G
y Raleigh-Ritz estimate: m*é”ﬁ@: (&)
Aa(8)

03 04 05 0.6 07 08 09

llll
g/ NG Note that for differential equation of the
1 \/_ Schoedinger equation of the harmonic oscillator
=—+G 4 =G
8o 2 lna](go) \/E:@ Z]m‘:27r:1E“ :>En:h7w




Recap -- Rayleigh-Ritz method of estimating the lowest eigenvalue
Example from Schroedinger equation for one-dimensional harmonic oscillator:

—h—zm +%ma)zx2f” (x)=E, f,(x) withf,(-0)= f,(0)=0

2m  dx’
Trial function £, (x)=e ®
S o ’ 2 2 2 2
Raleigh-Ritz estimate: M = h—[g + MJ =E..(2)
<fuia1 ‘o“ -fKria1> 2m 4g
g = % E.(g)= %h(o @ Exact answer
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Comment on “completeness” of set of eigenfunctions

It can be shown that for any reasonable function h(x),
defined within the interval a < x <b, we can expand that
function as a linear combination of the eigenfunctions f,(x)

h(x)~ )" C,f,(x),

where C, :LJ"Ja(x')h(x')f”(x')dx'.

N, e
These ideas lead to the notion that the set of
eigenfunctions f,(x) form a ““complete" set in the sense
of “'spanning" the space of all functions in the interval

a < x <b, as summarized by the statement:

a(x)zw =o(x—x").

n

Some details —
suggested that:  (X)= >.Cfo (),

where C, :ij"a(x')h(x') £ ().
Minimize: N, e

z({C})=] ax a(x)[h(x)—Zc,,f;(x)]

Necessary condition for minimum:

Note that: [ o(x), (x),(x)dx'= N3,

= ¢, =~ [ o), (e
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Green'’s function solution methods

[—%r(x)%+v(x) _ﬂd(x)sz(X,X') =5(x-x")

Among other things, this is useful for solving
inhomogeneous equations of the type:

(7%’[()6)% +v(x)— ﬂa(x)]l//(x) =F(x)

where F'(x),7(x),v(x),4, and o(x) are known,

and /(x) is to be determined according to:

b
w(x) = jdx'G(x,x')F(x D)
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Suppose that we can find a Green's function defined as follows:
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Green'’s function solution methods

Suppose that we can find a Green's function defined as follows:

[—%r(x)%+v(x) _ﬂd(x)sz(X,X') =5(x-x")

Completeness of eigenfunctions:

o(0) S LD ()

n

Recall:

In terms of eigenfunctions:

(—%T(x)%+v(x)—/10'(x)jG4(x,x') =a(x)§7f”(xl)f”(xv)

e Gy = S LN,
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Solution to inhomogeneous problem by using Green’s
functions

Inhomogenous problem for 0<x< L:
(—%T(x)% +v(x)— ﬂo'(x)) o(x)=F(x)
Green's function :
d d
(— —7(x)—+v(x)— la(x)]Gl (x,x") = 5(x - x')
dx dx
Formal solution:
L
() = @,0{) + [ G, (o, x)F (')l
0

Solution to homogeneous problem
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Example Sturm-Liouville problem:
Example: 7(x)=1 o(x)=1 v(x)=0; a=0 and b=L
A=l F(x)=F, sin(%}

Inhomogenous equation :

(— 5722 - 1J¢(x) =F, sin(%)
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Eigenvalue equation :

(— ;%an (x)=4,1,(x)

Eigenfunctions Eigenvalues :

£,(x) = %sin[%) A, = (%j

Completeness of eigenfunctions :

O'(X)Z L0/() (x]){” (') = 5(x - x')

n

In this example : %z sin[%) sin[ nm ) =5(x - x')

Example: 2 sin[nLﬂ)sin(mzx j:5(xfx')

For L=2

G > v R ANy
-0.8 -0.6 -0.4 -02 J U 0.2 04 0.6 0.8




Green's function :
d d
— () —+v(x) - Ao (x) |G, (x,x") = 5(x - x')
dx dx

Green's function for the example :

(nmx) . (nm'

S LGN, 2 Sm( L jsm( Lj
D D N R :

m — B [M) .
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Using Green's function to solve inhomogenous equation :

(7 j); - 1]¢(x) =F, sin(%)

B(x) =, (x)+ _L[ G(x,x")F, sin( ﬂx‘]dx'

L

sin(ﬂj
=@ (x)+ % Z"“ n;riL _([ sin(nTm')Fo sin(%)d}c'

=¢(x)+

g sin(ﬂ}
AR

L

Alternate Green's function method:

G(X,X'):%gu()&)gh(l})

[—:1 —l]g,(x) =0 =g, (x)=sin(x);  g,(x)=sin(L-x);
X

W= g,,(x)dg;b(cx) —gu(x)dng()c) =sin(L - x)cos(x)+sin(x)cos(L - x)

=sin(L)

sin(L—x)¢ . . (7x"), |
O(x) = 9y (x) + ) !sm(x)Fusm(Tjdx
sin(x) f . o L (wx"),

+rn(L)J:sm(L x)F},sm[—L jdx

ol
S—sin| —

L
)

V4
(Z (after some algebra)

o(x) =@,(x)+
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General method of constructing Green’s functions using
homogeneous solution

Green's function :
d d
——1(x)—+v(x)-Ao(x) |G, (x,x") = é‘(x - x')
dx dx
Two homogeneous solutions

(—ir(x)i+v(x)—/la(x)jgi(x): 0 for i=a,b
dx dx
Let

G, (x.x") = %gu (r)g,(x.)
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For ¢—0:

x'te x'te

d d
J dx(—;r(x);Jr v(x)— ﬂa(x)ij(x,x') = ,Y[deg(X7XI)

x'—€

d d\1
| dx(—ar(na]wga(xggh(m:1

e

_r(d ) nd o ad
W (dxgu(&)gh(x))]l% W (g[,(X)dxgh(X) gh(X)dxga(X)j

d d
=>W= T(X')[ga(X')dfg,,(x') - g,,(X')*gu(X')j
x dx
Note - W (Wronskian) is constant, since — =0.

= Useful Green's function construction in one dimension:

G, (x.x') = %gu (r)g,(x.)

1011512018

(*if(x)i +v(x)— ia(x))go(x) =F(x)
dx dx
Green's function solution:

0,(0)=0,0(5) + [ G, ()P ()’

X1

:¢40<x>+%jguu')ﬂx')m%m]ig,,(xwm')dx'




