PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF Olin 103

Plan for Lecture 19:

Read Chapter 7 & Appendices A-D

Generalization of the one dimensional wave equation → various mathematical problems and techniques including:

- Sturm-Liouville equations
 Eigenvalues; orthogonal function expansions
 - 3. Green's functions methods
 - 4. Laplace transformation
 - 5. Contour integration methods

10/15/2018

PHY 711 Fall 2018 -- Lecture 19

	Date	F&W Reading	Topic	Assignment	Due
1	Mon, 8/27/2018	Chap. 1	Introduction	#1	9/7/2018
	Wed, 8/29/2018	No class			
2	Fri, 8/31/2018	Chap. 1	Scattering theory	#2	9/7/2018
3	Mon, 9/03/2018	Chap. 1	Scattering theory		
4	Wed, 9/05/2018	Chap. 1	Scattering theory	<u>#3</u>	9/10/2018
5	Fri, 9/07/2018	Chap. 2	Non-inertial coordinate systems	#4	9/12/2018
6	Mon, 9/10/2018	Chap. 3	Calculus of Variation	<u>#5</u>	9/12/2018
7	Wed, 9/12/2018	Chap. 3	Calculus of Variation	<u>#6</u>	9/17/2018
	Fri, 9/14/2018	No class	University closed due to weather.		
8	Mon, 9/17/2018	Chap. 3	Lagrangian Mechanics	#7	9/19/2018
9	Wed, 9/19/2018	Chap. 3 and 6	Lagrangian Mechanics and constraints	#8	9/24/2018
10	Fri, 9/21/2018	Chap. 3 and 6	Constants of the motion		
11	Mon, 9/24/2018	Chap. 3 and 6	Hamiltonian formalism	#9	9/28/2018
12	Wed, 9/26/2018	Chap. 3 and 6	Liouville theorem	<u>#10</u>	10/3/2018
13	Fri, 9/28/2018	Chap. 3 and 6	Canonical transformations		
14	Mon, 10/1/2018	Chap. 4	Small oscillations about equilibrium	<u>#11</u>	10/5/2018
15	Wed, 10/3/2018	Chap. 4	Normal modes of vibration		
16	Fri, 10/5/2018	Chap. 1-4, 6	Review		
17	Mon, 10/8/2018	Chap. 7	Strings		
18	Wed, 10/10/2018	Chap. 7	Wave equation		
	Fri, 10/12/2018	No class	Fall break		
19	Mon, 10/15/2018	Chap. 7	Wave equation		

Rememb	er.
I CHIEHIL	CI.

Mid term exam due tomorrow (Tuesday) --

10/15/2018 PHY 711 Fall 2018 - Lecture 19

WFU Physics	Wake Forest College & Graduate School	ol of Arts and Sciences
	Indergraduate Graduate Research Resources Mechanical and Structural Properties of Fibrin Fibers" - Wednes	f 🖸 🗸
Colloquium: "The Med	hanical and Structural	Events
Properties of Fibrin Fibers" – Wednesday, October 17, 2018, at 4PM Posted on <u>Ostober 11, 2018</u> Professor Martin (20thold, Department of Physics, Wake Forest University George P. Williams, Jr. Lecture Hall, (Olin 101) Wednesday, October 17, 2018, at 4:00 PM		Colloquium: "The Mechanical and Structural Properties of Filbrin Filbers" - Wednesday, October 17, 2018, at 4PM Professor Martin Guthold, Department of Physics, Walte Forest University George F Williams, Ir. Lecture Hall, (Din 101) Wednesday, October 17, 2018, at 4:00 PM There will be a reception with
There will be a reception with refre interested persons are cordially inv	shments at 3:30 PM in the lounge. All ited to attend.	Colloquium: "Science and Technology Drivers in Batteries for Renswables Enc & Mobility Applications" – Wednesday, October 24, 2018 at 4:00 PM Dr. Ilias Belharouak, Distinguished Scientis and Group Leader at Oak Ridge National
		and Group Leader at Oak Ridge Nationa
10/15/2018	PHY 711 Fall 2018 - Lecture 19	4

Eigenvalues and eigenfunctions of Sturm-Liouville equations

In the domain $a \le x \le b$:

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)\right)f_n(x)=\lambda_n\sigma(x)f_n(x)$$

Properties:

Eigenvalues λ_n are real

Eigenfunctions are orthogonal: $\int_{a}^{b} \sigma(x) f_{n}(x) f_{m}(x) dx = \delta_{nm} N_{n},$

where
$$N_n = \int_a^b \sigma(x) (f_n(x))^2 dx$$
.

10/15/2018

PHY 711 Fall 2018 -- Lecture 19

Variation approximation to lowest eigenvalue In general, there are several techniques to determine the eigenvalues λ_n and eigenfunctions $f_n(x)$. When it is not possible to find the "exact" functions, there are several powerful approximation techniques. For example, the lowest eigenvalue can be approximated by minimizing the function

 $S(x) = -\frac{d}{dx}\tau(x)\frac{d}{dx} + v(x)$

where $\tilde{h}(x)$ is a variable function which satisfies the correct boundary values. The ''proof" of this inequality is based on the notion that $\tilde{h}(x)$ can in principle be expanded in terms of the (unknown) exact eigenfunctions $f_n(x)$: $h(x) = \sum_{n} C_n f_n(x)$, where the coefficients C_n can be

assumed to be real.

PHY711 Fall 2018 – Lecture 19

Estimation of the lowest eigenvalue - continued:

From the eigenfunction equation, we know that

$$S(x)\tilde{h}(x) = S(x)\sum_{n} C_{n}f_{n}(x) = \sum_{n} C_{n}\lambda_{n}\sigma(x)f_{n}(x).$$

It follows that:

$$\left\langle \tilde{h} \left| S \right| \tilde{h} \right\rangle = \int_{a}^{b} \tilde{h}(x) S(x) \tilde{h}(x) dx = \sum_{n} |C_{n}|^{2} N_{n} \lambda_{n}.$$

It also follows that:

$$\left\langle \tilde{h} \left| \sigma \right| \tilde{h} \right\rangle = \int_{a}^{b} \tilde{h}(x) \sigma(x) \tilde{h}(x) dx = \sum \left| C_{n} \right|^{2} N_{n},$$

$$\text{Therefore } \frac{\left\langle \tilde{h} | S | \tilde{h} \right\rangle}{\left\langle \tilde{h} | \sigma | \tilde{h} \right\rangle} = \frac{\sum_{n} |C_{n}|^{2} \ N_{n} \lambda_{n}}{\sum_{n} |C_{n}|^{2} \ N_{n}} \geq \lambda_{0}.$$

Rayleigh-Ritz method of estimating the lowest eigenvalue

$$\lambda_0 \le \frac{\left\langle \tilde{h} | S | \tilde{h} \right\rangle}{\left\langle \tilde{h} | \sigma | \tilde{h} \right\rangle},$$

Example: $-\frac{d^2}{dx^2}f_n(x) = \lambda_n f_n(x) \quad \text{with } f_n(0) = f_n(a) = 0$

$$trial \ function \quad f_{\rm trial}(x)=x(x-a)$$
 Exact value of $\lambda_0=\frac{\pi^2}{a^2}=\frac{9.869604404}{a^2}$

 $\text{Raleigh-Ritz estimate: } \frac{\left\langle x(a-x) \middle| - \frac{d^2}{dx^2} \middle| x(a-x) \right\rangle}{\left\langle x(a-x) \middle| x(a-x) \right\rangle} = \frac{10}{a^2}$

PHY 711 Fall 2018 -- Lecture 19

Rayleigh-Ritz method of estimating the lowest eigenvalue

$$\lambda_0 \leq \frac{\left\langle \tilde{h} | S | \tilde{h} \right\rangle}{\left\langle \tilde{h} | \sigma | \tilde{h} \right\rangle},$$

 $\lambda_0 \le \frac{\langle \tilde{h} | S | \tilde{h} \rangle}{\langle \tilde{h} | \sigma | \tilde{h} \rangle},$ e: $-\frac{d^2 f_n(x)}{dx^2} + Gx^2 f_n(x) = \lambda_n f_n(x) \quad \text{with } f_n(-\infty) = f_n(\infty) = 0$ Example:

trial function $f_{\text{trial}}(x) = e^{-gx^2}$

 $g_0 = \frac{1}{2} \sqrt{G} \quad \lambda_{\text{trial}}(g_0) = \sqrt{G}$ Note that for differential equation of the Schoedinger equation of the harmonic oscillator $\frac{1}{2} \sqrt{G} \quad \lambda_{\text{trial}}(g_0) = \sqrt{G} \quad \sum_{\text{PHY711 Fall 2018 - Lecture 19}} \lambda_{\text{trial}} = \frac{2m}{\hbar^2} E_0 \quad \Rightarrow E_0 = \frac{\hbar \omega}{2}$

Recap -- Rayleigh-Ritz method of estimating the lowest eigenvalue

Example from Schroedinger equation for one-dimensional harmonic oscillator:

$$-\frac{\hbar^2}{2m}\frac{d^2f_n(x)}{dx^2} + \frac{1}{2}m\omega^2x^2f_n(x) = E_nf_n(x) \quad \text{with } f_n(-\infty) = f_n(\infty) = 0$$

 $\text{Raleigh-Ritz estimate: } \frac{\left\langle f_{\text{trial}} \left| S \right| f_{\text{trial}} \right\rangle}{\left\langle f_{\text{trial}} \middle| \sigma \right| f_{\text{trial}} \right\rangle} = \frac{\hbar^2}{2m} \left(g + \frac{m^2 \omega^2 / \hbar^2}{4g} \right) \equiv E_{\text{trial}}(g)$

$$g_0 = \frac{m\omega}{\hbar}$$

$$E_{\text{trial}}(g_0) = \frac{1}{2}\hbar a$$

10/15/2018

PHY 711 Fall 2018 -- Lecture 19

Comment on "completeness" of set of eigenfunctions

It can be shown that for any reasonable function h(x), defined within the interval a < x < b, we can expand that function as a linear combination of the eigenfunctions $f_n(x)$ $h(x) \approx \sum C_n f_n(x),$

where
$$C_n = \frac{1}{N_n} \int_a^b \sigma(x') h(x') f_n(x') dx'$$
.

These ideas lead to the notion that the set of eigenfunctions $f_n(x)$ form a ``complete" set in the sense of "spanning" the space of all functions in the interval a < x < b, as summarized by the statement:

$$\sigma(x) \sum_{n} \frac{f_n(x) f_n(x')}{N_n} = \delta(x - x').$$

PHY 711 Fall 2018 - Lecture 19

Some details -

suggested that: $h(x) \approx \sum_{n} C_n f_n(x)$,

Minimize:

where $C_n = \frac{1}{N_n} \int_a^b \sigma(x') h(x') f_n(x') dx'.$

$$\chi(\lbrace C_n\rbrace) = \int_a^b dx \ \sigma(x) \left(h(x) - \sum_n C_n f_n(x)\right)^2$$

Necessary condition for minimum:

$$\frac{d\chi}{dC_n} = 0 \qquad \int_a^b dx \ 2\sigma(x) \left(h(x) - \sum_m C_m f_m(x) \right) f_n(x) = 0$$

Note that: $\int_{a}^{b} \sigma(x') f_{m}(x') f_{n}(x') dx' = N_{n} \delta_{mn}$

$$\Rightarrow C_n = \frac{1}{N_n} \int_a^b \sigma(x') h(x') f_n(x') dx'$$
PHY 711 Fall 2018 – Lecture 19

Green's function solution methods

Suppose that we can find a Green's function defined as follows:

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+\nu(x)-\lambda\sigma(x)\right)G_{\lambda}(x,x')=\delta(x-x')$$

Among other things, this is useful for solving inhomogeneous equations of the type:

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx} + v(x) - \lambda\sigma(x)\right)\psi(x) = F(x)$$

where F(x), $\tau(x)$, $\nu(x)$, λ , and $\sigma(x)$ are known, and $\psi(x)$ is to be determined according to:

$$\psi(x) = \int_{a}^{b} dx' G(x, x') F(x')$$

Green's function solution methods

Suppose that we can find a Green's function defined as follows:

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx} + \nu(x) - \lambda\sigma(x)\right)G_{\lambda}(x,x') = \delta(x-x')$$

Completeness of eigenfunctions:
$$\sigma(x) \sum_{n} \frac{f_{n}(x) f_{n}(x')}{N_{n}} = \delta(x - x')$$
 In terms of eigenfunctions:

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx} + \nu(x) - \lambda\sigma(x)\right)G_{\lambda}(x,x') = \sigma(x)\sum_{n}\frac{f_{n}(x)f_{n}(x')}{N_{n}}$$

$$\Rightarrow G_{\lambda}(x,x') = \sum_{n}\frac{f_{n}(x)f_{n}(x')/N_{n}}{\lambda_{n} - \lambda}$$

PHY 711 Fall 2018 - Lecture 19

Solution to inhomogeneous problem by using Green's functions

Inhomogenous problem for $0 \le x \le L$:

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx} + v(x) - \lambda\sigma(x)\right)\varphi(x) = F(x)$$

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)-\lambda\sigma(x)\right)G_{\lambda}(x,x')=\delta(x-x')$$

Formal solution:

$$\varphi_{\lambda}(x) = \varphi_{\lambda 0}(x) + \int\limits_{0}^{L} G_{\lambda}(x,x') F(x') dx'$$
 Solution to homogeneous problem

Example Sturm-Liouville problem:

Example: $\tau(x) = 1$; $\sigma(x) = 1$; $\nu(x) = 0$; a = 0 and b = L

$$\lambda = 1;$$
 $F(x) = F_0 \sin\left(\frac{\pi x}{L}\right)$

Inhomogenous equation:

$$\left(-\frac{d^2}{dx^2} - 1\right)\phi(x) = F_0 \sin\left(\frac{\pi x}{L}\right)$$

10/15/2018

PHY 711 Fall 2018 - Lecture 19

Eigenvalue equation:

$$\left(-\frac{d^2}{dx^2}\right)f_n(x) = \lambda_n f_n(x)$$

Eigenfunctions

Eigenvalues:

$$f_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$

$$\lambda_n = \left(\frac{n\pi}{L}\right)^2$$

Completeness of eigenfunctions:

$$\sigma(x)\sum_{n}\frac{f_{n}(x)f_{n}(x')}{N_{n}}=\delta(x-x')$$

In this example:
$$\frac{2}{L} \sum_{n} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi x'}{L}\right) = \delta(x - x')$$

10/15/2018

 $\frac{2}{L} \sum_{n} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi x'}{L}\right) = \delta(x - x')$ Example:

For *L*=2

10/15/2018

PHY 711 Fall 2018 -- Lecture 19

Green's function:

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)-\lambda\sigma(x)\right)G_{\lambda}(x,x')=\delta(x-x')$$

Green's function for the example:

$$G(x,x') = \sum_{n} \frac{f_n(x)f_n(x')/N_n}{\lambda_n - \lambda} = \frac{2}{L} \sum_{n} \frac{\sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi x'}{L}\right)}{\left(\frac{n\pi}{L}\right)^2 - 1}$$

10/15/2018

PHY 711 Fall 2018 -- Lecture 19

Using Green's function to solve inhomogenous equation:

$$\begin{split} &\left(-\frac{d^2}{dx^2} - 1\right) \phi(x) = F_0 \sin\left(\frac{\pi x}{L}\right) \\ &\phi(x) = \phi_0(x) + \int_0^L G(x, x') F_0 \sin\left(\frac{\pi x'}{L}\right) dx' \\ &= \phi_0(x) + \frac{2}{L} \sum_n \left[\frac{\sin\left(\frac{n\pi x}{L}\right)}{\left(\frac{n\pi}{L}\right)^2 - 1} \int_0^L \sin\left(\frac{n\pi x'}{L}\right) F_0 \sin\left(\frac{\pi x'}{L}\right) dx' \right] \\ &= \phi_0(x) + \frac{F_0}{\left(\frac{\pi}{L}\right)^2 - 1} \sin\left(\frac{\pi x}{L}\right) \end{split}$$

10/15/2018

PHY 711 Fall 2018 -- Lecture 19

Alternate Green's function method:

Antendate direction include:
$$G(x,x') = \frac{1}{W} g_a(x_c) g_b(x_c)$$

$$\left(-\frac{d^2}{dx^2} - 1 \right) g_i(x) = 0 \qquad \Rightarrow g_a(x) = \sin(x); \qquad g_b(x) = \sin(L-x);$$

$$W = g_b(x) \frac{dg_a(x)}{dx} - g_a(x) \frac{dg_b(x)}{dx} = \sin(L-x)\cos(x) + \sin(x)\cos(L-x)$$

$$= \sin(L)$$

$$\varphi(x) = \varphi_0(x) + \frac{\sin(L-x)}{\sin(L)} \int_{0}^{x} \sin(x') F_0 \sin\left(\frac{\pi x'}{L}\right) dx'$$

$$+ \frac{\sin(x)}{\sin(L)} \int_{x}^{t} \sin(L-x') F_0 \sin\left(\frac{\pi x'}{L}\right) dx'$$

$$\varphi(x) = \varphi_0(x) + \frac{F_0}{\left(\frac{\pi}{L}\right)^2} - \sin\left(\frac{\pi x}{L}\right)$$
(after some algebra)

10/15/2018

PHY 711 Fall 2018 -- Lecture 19

General method of constructing Green's functions using homogeneous solution

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+\nu(x)-\lambda\sigma(x)\right)G_{\lambda}(x,x')=\delta(x-x')$$

Two homogeneous solutions

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx} + v(x) - \lambda\sigma(x)\right)g_i(x) = 0 \quad \text{for} \quad i = a, b$$

$$G_{\lambda}(x,x') = \frac{1}{W}g_a(x_{\scriptscriptstyle <})g_b(x_{\scriptscriptstyle >})$$

For
$$\epsilon \to 0$$
:
$$\int_{x^{-1}\epsilon}^{x^{+1}\epsilon} dx \left(-\frac{d}{dx} \tau(x) \frac{d}{dx} + v(x) - \lambda \sigma(x) \right) G_{\lambda}(x, x') = \int_{x^{-1}\epsilon}^{x^{+1}\epsilon} dx \delta(x - x')$$

$$\int_{x^{-1}\epsilon}^{x^{+1}\epsilon} dx \left(-\frac{d}{dx} \tau(x) \frac{d}{dx} \right) \frac{1}{W} g_{\alpha}(x_{c}) g_{b}(x_{c}) = 1$$

$$-\frac{\tau(x)}{W} \left(\frac{d}{dx} g_{\alpha}(x_{c}) g_{b}(x_{c}) \right) \Big|_{x^{-1}\epsilon}^{x^{+1}\epsilon} = \frac{\tau(x')}{W} \left(g_{\alpha}(x') \frac{d}{dx} g_{b}(x') - g_{b}(x') \frac{d}{dx} g_{\alpha}(x') \right)$$

$$\Rightarrow W = \tau(x') \left(g_{\alpha}(x') \frac{d}{dx} g_{b}(x') - g_{b}(x') \frac{d}{dx} g_{\alpha}(x') \right)$$

$$Note - W \text{ (Wronskian) is constant, since } \frac{dW}{dx'} = 0.$$

$$\Rightarrow \text{Useful Green's function construction in one dimension:}$$

$$G_{\lambda}(x,x') = \frac{1}{W}g_a(x_{\scriptscriptstyle <})g_b(x_{\scriptscriptstyle >})$$

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx} + v(x) - \lambda\sigma(x)\right)\varphi(x) = F(x)$$

Green's function solution:

$$\begin{split} \varphi_{\lambda}(x) &= \varphi_{\lambda 0}(x) + \int_{x_{i}}^{x_{i}} G_{\lambda}(x, x') F(x') dx' \\ &= \varphi_{\lambda 0}(x) + \frac{g_{b}(x)}{W} \int_{x_{i}}^{x} g_{a}(x') F(x') dx' + \frac{g_{a}(x)}{W} \int_{x}^{x_{a}} g_{b}(x') F(x') dx' \end{split}$$

10/15/2018