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A molecular dynamics method for simulations in the
canonical ensemblet
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Division of Chemistry, National Research Council Canada,
Ottawa, Ontario, Canada K1A 0R6

(Received 3 October 1983 ; accepted 28 November 1983)

A molecular dynamics simulation method which can generate configura-
tions belonging to the canonical (T, ¥V, N) ensemble or the constant
temperature constant pressure (7, P, N) ensemble, is proposed. The
physical system of interest consists of N particles (f degrees of freedom), to
which an external, macroscopic variable and its conjugate momentum are
added. This device allows the total energy of the physical system to
fluctuate. 'The equilibrium distribution of the energy coincides with the
canonical distribution both in momentum and in coordinate space. The
method is tested for an atomic fluid (Ar) and works well.

1. INTRODUCTION

The molecular dynamics (MD) method has become an important technique
for the study of fluids and solids. In the standard MD method, the newtonian
equations of motion of the particles in a fixed MD cell of volume ¥ are solved
numerically. The total energy E is conserved, and thus the ensemble generated
by the simulation is the microcanonical or (E, V, N ) ensemble.

With the MD method, not only the static quantities but also the dynamic
quantities can be obtained. This is one advantage over the Monte Carlo (MC)
method. However, a disadvantage of the MD method is that the conditions of
the simulations are not the same as those normally encountered in experiments
(constant temperature, constant pressure or (T, P, N) conditions).

In this regard, Andersen’s introduction of the constant pressure MD method
represented a significant breakthrough [1]. In his modified MD method, the
volume becomes a variable and is allowed to fluctuate. The average volume is
determined by the balance between the internal pressure and the externally set
pressure P... The enthalpy of the system is approximately conserved, so this
method generates the constant enthalpy, constant pressure (H, P, N) ensemble,
Parrinello and Rahman subsequently extended the method to allow for changes
of the MD cell shape [2,3].  The usefulness of this latter method has been demon-
strated by numerous applications to structural changes in the solid state [2-7].

To perform MD simulations at constant temperature, one can simply keep
the kinetic energy constant by scaling the velocities at each time step and this
approach is now widely employed [8, 9]. However, there seems to be no

rigorous proof that the latter approach produces configurations belonging to the
canonical ensemble.
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Hoover et al. proposed a constraint method in which an additional velocity
dependent term is added to the forces to keep the total kinetic energy constant
[10]. Their method produces the canonical distribution for the potential energy
term. The fluctuations of the kinetic energy are suppressed.

A method for constant temperature MD simulations was also proposed by
Andersen [1]. This is effectively a hybrid of MD and MC methods since the
velocities of the particles are changed stochastically to preduce the Boltzmann
distribution. It also lacks a well defined conserved quantity. Tanaka et al.
applied Andersen’s method to a Lennard-Jones system and also to a water
system [11]. They found that if the probability of the stochastic collision
exceeds a certain value, the diffusion coefficient decreases appreciably. To
prevent the decrease of the diffusion coefficient and at the same time to maintain
the temperature constant, it seems to be necessary to select the collision
probability in a certain range.

In the present article, a new molecular dynamics method at constant tempera-
ture is proposed. By introduction of an additional degree of freedom s, the total
energy of the physical system is allowed to fluctuate. A special choice of the
potential for the variable s guarantees that the averages of static quantities in this
method are equal to those in the canonical ensemble. This method is purely
dynamical. In the extended system of the particles and the coordinate s, the
total hamiltonian is conserved and all the equations of motion are solved without
introducing any stochastic process.

The formulation of the method is presented in §2. As an example, an
application to a system of argon atoms is given in § 3. If the present method is
combined with the constant pressure MD method, then simulations at conditions
of a constant temperature and constant pressure are also possible. The formu-
lation for the (T, P, N) ensemble is given in the Appendix.

2. A CANONICAL ENSEMBLE MOLECULAR DYNAMICS METHOD

2.1. Equations of motion

We formulate the system which produces configurations following the
canonical distribution. We limit the discussion to the case of atoms, but the
extension to molecular systems is straightforward. First, consider a physical
system ; N particles with coordinates ry, ry, ..., ry in a fixed volume V, and
potential energy ¢(r). An additional degree of freedom s is introduced, which
acts as an external system. The interaction between the physical system and s
is expressed via the scaling of the velocities of the particles,

Vi=sl.',,¢, (2.])

and v, is considered as the real velocity of particle &.  We can interpret this as an
exchange of heat between the physical system and the external system (heat
reservoir).

We associate a potential energy (f+1)k7T.q In s with the variable s, where f
is the number of degrees of freedom in the physical system, k Boltzmann’s
constant, and T, the externally set temperature value. As we shall see, this
choice of potential energy ensures that canonical ensemble averages are recovered.
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The lagrangian of the extended system of particles and s is thus postulated to be

m‘ o 1
2= LR R U+ A+ DRT Ins, 22)
The kinetic energy term, }Qs? is introduced in order to be able to construct a
dynamic equation fors. The parameter () has the dimensions of energy - (time)?
and determines the time scale of the temperature fluctuation. The equations of
motion for r; and s are derived from the lagrangian equation

d (o2 02
7] 24) " oA (2.3)

where A stands for one of the variables mentioned above.,
The equations for the particles are

d od
— (ms2 )= — i
& (ms )= —F, 24)
or
. 1 o6 25,
Fi= “m—is-ga—n—? LED ' (2.5)
The equation for s is '
1)RT,
Qi= zi}m,.sf,.z—ws)—e‘a (2.6)

If we denote the average in the extended system by <. . ., the relation

<ﬂ>=(f+l)knq <1> 2.7)

s
is obtained from (2.6) because the time average of a time derivative (e.g. Q%)

vanishes. This suggests that the average of the kinetic energy coincides with the
externally set temperature T,,.

The momenta are given by

0L
pi=—aF="lis2 |"i (2.8)
and
0¥ )
P8= as- =Qs‘ (2-9)
The conserved quantities in this extended system are the hamiltonian
pi2 Psz
9?11=;m+¢(r)+ﬁ+(f+l)k7‘eqlns, (210)
the total momentum
P= Zilpi= X (ms? #), (2.11)
and the total angular momentum
M= Zroxpi= Lrox(me ). (2.12)

12
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2.2. Proof of the equivalence of the present method and the canonical
ensemble
Now we prove that the equations of motion derived from (2.2) produce
configurations in the canonical ensemble at temperature T, Our extended
system produces a microcanonical ensemble of (f+1) degree of freedom. The
partition function of this ensemble is defined by

1 2 2
Z=;§dp,fdsfdpfdes ( ) 2_%2+ ¢(r)+§§+(f+1)kreq In s—E). (2.13)

Here, 3(x) denotes the Dirac & function, and the shortened forms dp=
dpl dP2 v de’ dr=dl'l drz e drN are used‘
The momentum p; is transformed as

%= P (2.14)

and the volume element becomes dp=s'dp’ (f is the number of degrees of
freedom in the physical system). There is no upper limit in momentum space,
so we can change the order of integration of dp’ and ds ;

1 " .
Z=3 5 dp,§ dp’ § dr § ds 5 ( ;Z%:Ti+¢(r)+5—g+(f+l)kTeq m_E).

Using the equivalence relation for 8 function 8(g(s))=38(s—s$)/g'(s), where
s is the zero of g(s)=0, and the shortened form :

#(p',r)= ? p’32m;+ §(r),

. we get

_1 , st [ (£ ) +(2:220) - E)
Z—N!jdpsj'dp jdr]ds(—f—m]—,e—qé‘(s—exp[— G+ kT ])

1 1 ¥
=mmjdpafdp’j'dr exp [—(W(P', r)+5—sQ— )/kTeq]'

The integration with respect to p, can be carried out immediately, so we get
the final result

1 [(220\t2 |
z_m(m) exp (E/kToq) Ze- (2.15)

Z, is the partition function of the canonical ensemble
1 ,
Zomx [ dp' [ dr exp [ H(P', P)/RT ) (2.16)

The average of some static quantity which is an arbitrary function of p;/s and
r, in the extended system is exactly the same as that in the canonical ensemble,

<A(§, )>= AP e 2.17)

where <. ..)>, means the average in the canonical ensemble.
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The above result is derived from the assumption that the only conserved
quantity is the total hamiltonian ;. In fact, the system has other conserved
quantities : total momentum and angular momentum. These deviate by an
order O(1/N) from the canonical ensemble averages. A similar result was
already pointed out by Hoover and Alder for the microcanonical ensemble [12].

The correction for total momentum conservation in this method can be
achieved by using f— 3 in place of f in the definition of both the lagrangian and
the instantaneous temperature.

2.3. Some average quantities in the canonical ensemble MD method
If the instantaneous temperature T is defined as

p:® _ f
; 2m;s® 2 kT,
the average and the fluctuation of T are, respectively
<T>=<T>c=Teq (2'18)
and

AT =Teq)> =AT = Teq)de=Tey? gf - (2.19)

The formula for the heat capacity c, is derived from the fluctuation of the total
energy '

p.®
Ep= ;Zm—,sz-'_ql’(r)’

o o SEre~<Epy; 1
Y NkT,? kT, p
fh | {$*>e—<$)2

TN T NRT,E (2.20)

I(kToq )2+ <¢2>c"‘ <¢>3
2 N N

eq

We can also obtain averages of quantities depending on s,
§dp,§dp’ § dr B(p', r) f ds . stti+m
x S(s—exp [ £, 1)+ (p320)~F
(8- [0,
s §dp,§dp”§drfds s+r

(f+1)kT.,

—ex mE f+1 \2
€ p[(f+1)knq] (f+1+m)

(2o [ - i 2. ean
eq ¢
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Some special case of (2.21) are

N mE f+1 \v+e
sy =exp [(f—i—l)kTeq] (f+1+m)

P2\ _ /P A\ _ /I\f+]
()= Gee =G Hr

This last equation is identical to (2.7).
The fluctuation of s is

| <(sz—s§>)2>={((fif1§<?i3))u+l)lz
 Sexp (= [2/(F + DIGRTe)De 4 }
Cexp {— [+ D[R T )2

=W\ N
<( S )>_ s (2.24)

24, An interpretation of the variable s

To obtain the dynamical quantities, the variable s can be interpreted as a
scaling factor for the time step At in the simulations. The real time step A’
is obtained by the relation

(2.23)

For large f, (2.23) tends to

At = %-’. | (2.25)

The length of each time step At is now unequal.

Equation (2.25) is deduced as follows. In simultaneously transforming
s'=s/a, and ¢’ =t/a by a constant a, the coordinates and their time derivatives
change as

r'=r, F=af, ¥=ad,..,

p'=Pla, t'=t/a, (2.26)
s'=sla, §'=§ §=a$ ...}
the hamiltonian 5#, is invariant except for a constant term
H'y=H1—(f+1)kTeqIna. (2.27)

So only the ratio ¢/s=#'[s' has any real meaning, and in the case of =1, the
hamiltonian recovers its normal, unscaled form. The time in this case is
considered to correspond to the real time. The velocity in (2.1) is re-expressed

as

v _dri_sdri
s




Canonical ensemble MD method 261

'The length of the time step is unequal in the canonical ensemble MD method.
For calculation of time dependent quantities, it is convenient to sample at intervals
that are integer multiples of a unit time step. This can be done very easily by
interpolation. At equilibrium, the fluctuation of s is of order N-1/2 (see 2.24)),
so in practice, the differences in the lengths of individual time steps can some-
times be ignored. An averaged real time can be obtained by multiplying the
simulation time with (s~1>,

The detailed nature of the dynamics depends upon the value of O chosen,
However, some dynamic quantities (especially, one body quantities) of the system
are, we believe, less sensitive to the value of Q. If this is the case, we can get
information on both static and dynamic quantities. :

The frequency of the s oscillation can be estimated from (2.5),

. P _(f+1)
QS: ;W——T— kTeq

We assume the system is in equilibrium, and s fluctuates around the averaged
value {s), s={s)+ds. 'Then the above equation can be simplified as

" sy 1 2fkT,
O(88)=fkT,, (-}3— -~ )=- <s>2“ 3s. (2.28)
This is the equation for a harmonic oscillator, with frequency
2fRT g \*2.
ol ravei 2.29
@ ( Q<s>2> (2.29)
The period of the oscillation is
2r_, Q)
m=—= 57— ] - 2.30
o =2 (kaTeq) (2.30)

A typical value of O for a 108 particle system, at T.q=150K and for t,=1 ps
is 20 (k] mol-1)(ps)®.

The transformation (2.26) can be used to change the length of time step.
Without this control, the real time step in the simulations may become too small
or too large. For a small time step, the calculation is inefficient ; for a large
one, the precision of the calculation cannot be maintained.

3. AN APPLICATION

The canonical ensemble MD method was tested on a system of 108 argon
atoms (mass 39-9 g mol~?), interacting with a Lennard-Jones 12-6 potential
(e=1-039 kJ mol™!, 0=3-446 A) which was truncated at 8-5 A. The MD cell
was a cube of edge length 17-5 A (or volume 29-88 cm3 mol-1) and as usual, the
periodic boundary condition was adopted. A 5th order predictor—corrector
algorithm was employed for integration of the equations of motion. A time step
At=2-5x10-1%s was used, except for the runs with Q=100 (k] mol-1)(ps)? for
which At=5-0x10-'%s, Each run consisted of the calculation of 2500 time
steps, the first 500 steps being discarded from the ave

In all applications, differences in the length of i
ignored and the real time was calculated b
by the factor {s71).

raging.
ndividual time steps were
y multiplying the time of simulation
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The simulations were carried out by the following scheme. First, starting
from an initial configuration (f.c.c. structure) a standard MD run (No. 1) was
carried out at about 150 K. This was followed by a constant temperature
simulation at T,=100K (No. 2). Then, the temperature was reset to
T.q,=150 K (No. 3) and finally the effects of using different O values 1, 10, and
100 (kJ mol=*)(ps)® were compared at 100 K and 150 K (No. 4-9). The results
are listed in the table. The deviations of the temperature from T, are less than
1 K. The runs with Q=1 show especially good agreement. The averages of
the potential energy and pressure give almost the same results for different o
values. The run No. 9 clearly did not reach equilibrium because the tempera-
ture fluctuation is too large. The sudden increase in the value of O at the
beginning of the run gave a huge amount of kinetic energy to the variable s,
which could not relax to equilibrium in the 2500 timesteps.

250

T

Q = 1'.0 (kJ/mol)Eps)z

200

e ———
e

R R JR

Temperature
—
o
=)
f
;

1
{
1
1
T
1
t
1}
1
H
1
:
t
H
1
1

100 |l

e

h
1
\
'
'
‘
i
[

250 7500

Figure 1. Evolution of the temperature. The first 1250 steps shown (1250-2500 step)
are carried out with the standard MD method. At step 2500, the simulation is

changed to the constant temperature method with Teq=100 K. At step 5000, Teq
is changed to 150 K.

Figure 1 shows the evolution of the instantaneous temperature through the
first 3 runs. In the constant temperature method, the temperature reaches
T,q quickly and fluctuates around this value. The approximate formula for the
fluctuation of temper\ature in the microcanonical ensemble [13, 14].

GTSspm Tt g 1-5) G.1)

(cv» heat capacity) shows that the temperature fluctuations in the canonical
ensemble are larger than those in the microcanonical ensemble. We can readily
recognize this in figure 1. The values of AT=((8T)%p)1", 83 K at 100 K
and 12-4 K at 150 K are comparable with those given by (2.19), 79 K at 100 K

and 11-8 K at 150 K. As expected, the value of AT, and the heat capacity

which is calculated from AT and the fluctuation of the potential energy, are less
accurate than the energy or pressure results,
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Figure 2. Comparison of the temperature fluctuations in runs with different O values at
100 K. Above:
total real time is about 7 ps.

Figure 3. Comparison of the mean square displacements for different Q values at 150 K.
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The comparison of temperature fluctuations in the run with O=1 and
100 (kJ mol=*)(ps)? is given in figure 2. With QO =1, the time scale of the
fluctuation of s and that of the temperature are almost the same. On the other
hand, with O =100, the temperature fluctuation can be decomposed into two
components : the intrinsic temperature fluctuation of the physical system and a
slow modulation due to fluctuation in s.

The time periods of fluctuations in s are £,=0-34 ps for Q=1 and t,=2-99 ps
for 0=100. The estimates given by (2.30) are ,=0-38 ps for Q=1 and
t,=3-8 ps for 0=100.

As a check on some dynamic quantity, the diffusion coefficient D was
calculated from the mean square displacement. '

D= lim {Jrd2) - 'i(O)l2>.
> 6t

(3.2)

The plot of the time evolution of the mean square displacement for different 0
values is given in figure 3. All values for D for a given temperature seem to
agree reasonably well. Even run No. 9 gives almost the same result as the
other T, =150 K runs, in spite of the large deviation from a straight line.

4. CoNCLUSION

An MD method for constant temperature simulations has been presented.
One can see from the derivation in § 2 that different kinds of constant tempera-
ture simulation methods can be constructed by changing the functional form of
the potential for the variable s. However, the equilibrium distribution function
thus obtained is related to the inverse function of the potential for s, so that any
other choice but a logarithmic form, results in an ensemble different from the
canonical one. Therefore, a constant temperature method does not always
imply that the calculation samples from the canonical ensemble.

The present method gives static quantities in the canonical ensemble. If

~we employ the interpretation that s is a scaling factor of time and that the real

unit time A#’ is related to the simulation unit time Az by At’ = At/s, calculation
of dynamical quantities also seems to be possible. Of course, we have rigorously
proved nothing concerning with the dynamic quantities, but it will be worth

trying to determine under what conditions can one obtain the dynamical
quantities reasonably well.

Main features of the present method are

(1) The extended system of the particles and the variable s conserves the total
hamiltonian. This gives a powerful error checking method in the process
of programming and a useful precision control method in the simulations

[7].

(2) Since the present method employs a similar technique as the constant

pressure MD method, it can readily be extended to the constant tem

pera-
ture constant pressure ensemble,

(3) Th? scaling of the velocities can be interpreted as a scaling of the time
varn.able. At t.he same time, the constant pressure MD method is
derived by scaling the coordinates. The extension of the MD method
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to ensembles other than the microcanonical ensemble is formulated in a
unified fashion.

(4) This method gives the rigorous canonical distribution both in momentum
and in coordinate space.

If a structural change occurs during the simulation, the temperature neces-
sarily changes and the standard MD method cannot produce the data at the
required external conditions. The constant temperature method, especially the
(T, P, N) ensemble method given in the Appendix, will be particularly useful in
this situation.

During the preparation of the present paper, other constant temperature MD
methods were proposed by Evans [15], by Evans and Morriss [16], and by Haile
and Gupta [17]. The present method is the only one which gives the rigorous
canonical distribution both in momentum and in coordinate space. The
comparison with other methods will be presented in a forthcoming paper.

The author thanks Mike Klein, Ian McDonald, Bart de Raedt, Ray Somorjai,
and Michiel Sprik for their interest and helpful discussions.

APPENDIX

Formulation for the constant temperature constant pressure (T, P, N)
ensemble

The constant temperature MD method is readily extended to the (T, P, N)
ensemble.

In this Appendix, we use the formulation for uniform dilation by Andersen
[1], but the extension to the generalized form of the constant pressure simulation
method by Parrinello and Rahman can be done in a similar way [2, 3, 7].

In the case of the (T, P, N) ensemble, the MD cell is considered to be a cube
of edge length V15, the coordinate r; being expressed as

re=Vinx, (A1)

where x; is a scaled coordinate and the values of its components are limited to the
range of 0 to 1. The velocity is also expressed by a scaled form

o= V1B %, (A2)

The lagrangian is
m; . 0. w .
f= Z—z-sz V28 g2 p(V1i8 x)+% S2—(f+1)kT q In s+ Vi-P.,V.(A3)

P,. is the externally set pressure. The kinctic energy term for the volume is
}WV?  The equations of motion are

d ; o4

APt 70 Y- SON YA AR 74 ¥ Jhi o

7 (m;s? V3B x;) 2, 14 o, . (A 4)
or

) 1 o4 (2§ VN,

X T e v E‘_r,-—-(T-’-gI—/) . (A3)
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Qs= ; msyen )-(iz_(_f':_l) kT, | (A6)
and
wv ! 2 1213 4 2 o¢ '
=%I—/ Z';mis V”‘i"z,:""e_n —P,,. (A7)

With the momenta
pi=ms® V2B %, p,=WV, and p,= Os,

the hamiltonian becomes

— p:* 13 s v°
‘#2_§W+¢(V X)+@+(f+l)kTeq1n8+2—n—/+PexV. (A 8)

The partition function of this system is
1
Z=J—V—-|[dps_(dsjdp;dde'dpjdx(Saﬂ—E) (A9)

By scaling p and x as p/sV18=p’, V1B x=r, we get

1
Z-_-N_!j'dpsjdp,,jdea’p'fdrfds .88y~ E).

Following the steps in § 2, one derives the result
1

E71
Z= oy (@ryQW) ™ exp [m] xSV idp far

x exp[ —( b p"£2+ é(r)+ P,y V)/kTeq]

2m,

1 o]
=if+_l) ((217)ng)1:‘2 exp [kﬁ ] ZTPN' (A 10)

eq

Zppy is the partition function of the (7, P, N) ensemble. The averages of

static quantities which are functions of p’, r, V are the same as those in the
(T, P, N) ensemble :

<A(;%§, Vs x, V)>= AP, vy VD rpy- (A11)
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