PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF Online or (occasionally) in
Olin 103

Discussion of Lecture 10 — Chap. 3 &6 inF & W

Lagrangian mechanics including constraints
1. Lagrangian representation of electromagnetic fields

2. Examples of Lagrangian analysis including
constraints
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Physics colloquium Thursday, Sept. 17, 2020 at 4 PM

John Finke, PhD

Associate Professor

Sciences and Mathematics, division of
School of Interdisciplinary Arts and Sciences
University of Washington, Tacoma

“Drug Delivery Through the Blood-Brain Barrier,
Antibody Biosensors, and Protein-Knots: Biophysics
Research at an Urban-Serving Campus During the
Pandemic”
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Schedule for weekly one-on-one meetings

Nick — 11 AM Monday (ED/ST)
Tim — 9 AM Tuesday

Bamidele — 7 PM Tuesday
Zhi— 9 PM Tuesday

Jeanette — 11 AM Friday
Derek — 12 PM Friday



5

Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

Date F&W Reading Topic Assignment Due

1 |Wed, 8/26/2020 |Chap. 1 Introduction #1 8/31/2020
2 |Fri, 8/28/2020 |Chap. 1 Scattering theory #2 9/02/2020
3 [Mon, 8/31/2020 |Chap. 1 Scattering theory #3 9/04/2020
4 |Wed, 9/02/2020|Chap. 1 Scattering theory

5 |Fri, 9/04/2020 |Chap. 1 Scattering theory #4 9/09/2020
6 [Mon, 9/07/2020 |Chap. 2 Non-inertial coordinate systems

T Wed, 9/09/2020 |Chap. 3 Calculus of Variation #5 9/11/2020
8 [Fri, 9/11/2020 |Chap. 3 Calculus of Variation #0 9/14/2020
9 [Mon, 9/14/2020 |Chap. 3 & 6 [Lagrangian Mechanics #7 9/18/2020
10 \Wed, 9/16/2020|Chap. 3 & 6 |Lagrangian & constraints #8 9/21/2020
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PHY 711 - Assignment #8

Sept. 16, 2020
Continue reading Chapters 3 and 6 in Fetter and Walecka.

0

1. The figure above shows a box of mass m sliding on the frictionless surface of an inclined plane (angle 8). The inclined
plane itself has a mass M and is supported on a horizontal frictionless surface. Write down the Lagrangian for this system in
terms of the generalized coordinates X and s and the fixed constants of the system (8, m, M, etc.) and solve for the

equations of motion, assuming that the system is initially at rest. (Note that X and s represent components of vectors whose
directions are related by the angle 6.)
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Your questions —

From Nick —

1. How do you solve the Lagrangian for Euler angles presented in Lecture 97
2. Would like some details on the Lagrangian for electromagnetic interactions.

From Tim —

1. When adding a constraint to a lagrangian, is it usually associated with the
geometry of the problem (ie. r-I for the pendulum)?

From Gao —
1 No matter potential depends on velocity or not, to minimize the integral
S= J L()dt L must satisfy the same following equation. But L must include the

velocity-dependent potential for the situation when potential depends on
velocity. Right? Thank you.

Are those which minimize the action: S = IL ({qg} 44, } ,f)df
Euler-Lagrange equations:

Z EG_L?G_L g,=0 —=foreach o: 40 oL -0
dt o4, 0q,

a
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Your questions —

From Jeanette —

1. I would like to go through the Lorentz force example from last lecture, it

looked like it may already be included in the lecture today. | find the examples
to be more helpful than the derivations.



Example from Lecture 9 representing the motion of a
symmetric top with moments of inertia |, and |; and with
generalized coordinates a, 3,y (Euler angles)

Anotherexample: L=L({g }{g, ht)=T-U

oL oL,
dt 0q. 0q,_

L=L(a,B,7,a,5,7) :%[1(022 sin” ,8+,[5’2)+%I3(0kcos,8+7?)2 — Mgd cos 3
d oL d

Y dt([(xsm B+1, (acos,b’+7/)cos,b’)
o

doL d/ . . 0L
dt of3 B dt( 1'8) op Worrisome equations, but
we will develop some tricks

d oL _d (]3(dcos,3+ 7)) —0 to help us solve them.
dt Oy dt
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Lagrangian mechanics with Lorentz forces
Summary of results (using cartesian coordinates)
L = L(x,y,z,)'c,j/,z',t) =7-U

scalar potential

T=im(i+y*+2)  U=q®(r,t)-Li A(r,)
C

1 OA (r,1)
c Ot

vector potential

where E(r,t)=-VO(r,¢) B(r,t)=VxA(r,t)

L=1tm(:+7"+2*)—q0(r,t)+ L A(r,1)

L e
2
C

Note that if the system also has a mechanical potential, V' (r), this 1s added

to the electromagnetic contributions. The full Lagrangian would then be

L(r,i,t) = %m|1'~|2 —V(r)— q®(r,t)+ qr - A(r, 1)



Note: In our discussion of D’Alembert’s virtual work
analysis, we concluded that

d oL OL
— =0 for L=L aq ¢, t)=T-U
12 2 (9.} {011
provided that ia—.UZO
dt 0q_
Here we examine how %S—U may not be zero and can
95

be designed to represent velocity-dependent forces.

Do you think that it is cheating to manipulate U in this way?
a. Yes

b. No
c. Depends on how we define U



Lorentz forces:
For particle of charge ¢ in an electric field E(r, ¢) and magnetic field B(r,?) :
Lorentz force: F = q(E +Lvx B)

X —component: F. = Q(Ex +1(vx B)x)
In this case, 1t 1S convenient to use cartesian coordinates

L=L(x,y,2,%,7,2,t)=T-U

T=im(&+3° +2°)

d OL OL . doU oU
X-component: — — =0 = mx — — + =0
dt Ox Ox dt ox Ox
oU d oU
Apparently: F =-— +
PP =y T ox
Answer: U= qCD(r,t)—gi‘-A(r,t)
C
1 OA(r,t)

where E(r,7)=-V®(r,7) B(r,t)=VxA(r,t?)

c Ot



Lorentz forces, continued:
x —component of Lorentz force: F_= Q(Ex +4 (V X B)x )

Suppose: U = qCD(r,t)—gl"-A(r,t)
C
oU N d oU
Ox dt ox
We want to demonstrate that the supposed form of U is

consistent with the general Lorentz force given above.
Evaluating the derivatives:

Consider: F, =-—

O0A (r,t
_8_U:_q6d)(r,t)+g x&Ax(r,t)+y r )+Z,8Az(r,t)

ox ox C ox ox ox

8_(.] —gAx(r,t)

OX C
i@_U:_gM:_g(ﬁAx(r,t)jH_GAx(r,t)y+8Ax(r,t)z,+8Ax(r,t)J
dt ox c dt c ox oy 0z ot



Lorentz forces, continued:

OA (r,t
_8_U:_q6CD(r,t)+g xan(r,r)+y, r )+Z,aAZ(r,t)
Ox Ox c Ox Ox Ox
ia_(./ _q 8Ax(r,t)x+ 8Ax(r,t)y+ 8Ax(r’t)z’+ 0A4_(r,¢)
dt Ox c Ox oy 0z ot
F o= oU d oU
ox dt Ox
_ 8CD(r,t) L9 OA, (l‘,t) B 5Ax(r,t) L9 OA. (r,t) B 6Ax(r,t) q 8Ax(r,t)
1 Ox c Y Ox oy c Ox oy c Ot
__ 00(rt) gqodlri) g (4000 a4(rd)) g Z,( 04,(r,t) o4, (r,t)j
1 ox c Ot c Y Ox oy c ox 0z



Lorentz forces, continued:

Summary of results (using cartesian coordinates)
L = L(x,y,z,)'c,j/,z',t) =7-U

T=im(i+y*+2)  U=q0(r,t)-Li A(r,)
C
where E(r,t)z—VCD(r,t)—laAg’t) B(r,t)=VxA(r,z)
C
q .



Example Lorentz force

L=1m(i+7 +2°)-q0(r,6)+ Li- Alr,z)

2

C

Suppose E(r,1)=0, B(r,t)= B,z
A(r,t) = LB, (— yX + x3)

q
2c

q
2c

BOJ/]_

Boxj +

L:%m()'c2+)>2+Z'2)+2iBO(—5cy+j/x)
C
d 0L oL d( .
— =0 = —| mx——
dt Ox Ox dt
d 0L 0oL d( .
———=0 = —| my+—
dt oy Oy dt
déL—@LzO :imZ':O
dt 0z 0Oz dt

ziCBoy:()

4 Bx=0
2C



Example Lorentz force -- continued

L:%m()'cz+y2+22)+2iB0(—Xy+yx)

C

d m'—lBOyj—iBoy':o —mi-LB =0
dt 2C 2c C

d( . ¢q qg . . . q ..
—| my+—B,x |+—B,x=0 =>my+—B.x=0
dt(y2coj2(zo yco
imz':O =>mz =0



Example Lorentz force -- continued

L=1im(x+7° + z’2)+ziBO(— Xy + yx)
C
mi =+LB
C
my = —QBOX
C
i =0 Note that same equations are obtained

from direct application of Newton's laws :

myr :gi‘xBoi

C



Example Lorentz force -- continued

N

Consider formulation with different Gauge: A(r)=—-B,y%

q

L=5m (x + 37+ 2 )——Boy'cy

C
d( . .
—(mx—gBoyj:O :>mx—1B0y=O
dt c c
d . . . .
—(my)+1BOx=O :my+gBOx:O
dt C C
d
—mz =0 = mz =0



Example Lorentz force -- continued
Evaluation of equations:

q

mx =By =0 x(1)= Vsm( t+¢)
my+130x:0 y(t)zl/()cos(%t+¢)
C




Comments on generalized coordinates:

L=L({g, Oh{4, O}ht)
d oL oL
dt 0g_ 0q

=0

Here we have assumed that the generalized coordinates
q, areindependent. Now consider the possibility that
the coordinates are related through constraint equations
of the form:

Lagrangian: L= L({g.()},{d.(0)}?) hqauglaarl}gres
Constraints : f] = fJ ({qo (t)}, t) =0 lp
9, _

0

: . L L
Modified Euler - Lagrange equations : d oL _ 2 + Z A
j

dr 84, 4, oq

(o}



Your question -- When adding a constraint to a
Lagrangian, is it usually associated with the geometry?

Comment -- That is often the case. The constraint
iInvolves relationships between the generalized
coordinates and that often has a geometric interpretation.
Note that in order for these equations to work, the
constraint must not involve time derivatives of the
coordinates. If that happens, the problem is given a
terrible name — “nonholonomic® and becomes very
difficult to solve.



Simple example:

L(u(t),u(t)) =L mu* + mgusin 0

. L(x,p.%,3) =+m(&> + 37 )- mgy
f(x,y)=sinf x+cosf y=0
Note that: u =xcos@ — ysiné
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Case 1:
L(u(t),u(t)) =L mu* + mgusin 6

d aL—aL:O:rmLi—mgsinQ:O
dt ou Oou
Case 2:

1

L(x,y,%,9) =+m(& + 37 ) - mgy
f(x,y)=smnf x+cosf y=0

d@L_@L 8f =0=mx+ Asin@
dt Ox Ox 8x
d@L_@L 6f

=0=my+mg+ Acosb
dt 0y Oy 8y y+mg

sinf x+cosf y=0

= A =—mg cos ) {u——

(cos@ i —sinf j) = gsinf

9/16/2020 PHY 711 Fall 2020 -- Lecture 10

=i =gsinf

Which method would
you use to solve the
problem?

Case 1

Case 2

Force of constraint;
normal to incline

23



Rational for Lagrange multipliers

Recall Hamilton's principle:

S = jL({qg(t)},{qa(t)},z)dt

f d oL oL
55 =0= j > - g |dt
\T\dtdq, 0q,

With constraints:  f, = f| ({% ()}, t) =0

Variations oq_ are no longer independent.

of
5;3:0:2%5% at each ¢

o)

— Add 0 to Euler-Lagrange equations in the form:

of .
>4, Y g,
J o qa



Euler-Lagrange equations with constraints:

Lagrangian: L = L({qa (1) }, {q’a (1), t)
Constraints: f, = f. ({qa (t)}, t) =0

Modified Euler - Lagrange equations : d 6.L _ oL + Z =
dt aQO‘ 6QO‘ J GQO'
Example:

Lagrangian: L = %m( 2 4 r20? )+ mgr cos
Constraints: f =r—£=0

mg
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Example continued:

Lagrangian: L = %m(2 +r26° )+ mgr cos @
Constraints: f =r—£=0

im#—mréz —mgcosfd+A1=0
dt

d e .
—mr-60+mgrsinf =0

dt

r=0=r r=>,
— 0 =—%sin«9

— A=mlO*+mgcosh



Another example:

A o
: /

Lagrangian: L=1m/; +1m 05 +mgl +m,gl,
Constraints: f=/¢,+/(,—(=0

N d .
|8 —ml, —meo+A1=0
¢ :1 T g 18
1 : .
1,‘ I jl %mzfz—m2g+/1:0
r:= ‘ Figure 19.1 Atwmd':mlchint.zl_l_kzzozzl_l_zz
N 2mm, o
m, +m,
= =
m, +m,
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Consider a particle of mass m moving frictionlessly on a
parabola z=c(x°+y?) under the influence of gravity. Find
the equations of motion, particularly showing stable
circular motion. -
L=—(xX"+3"+2")—mgz
S (X743 42 )= mg

L(x9y9'x9.)./)

:%( ¢* + 9 +4cz(x5c+y)>)2)—mgc(x2 +y2)
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L(x,y,x,y) = 2(x +y +4c° (xic+y)'/)2)—mgc(x2+y2)

Transform to polar coordinates;

X=7rcos¢ y =rsing

L(r,p,i @) =— (r + g +4c*r )—mgcr2

Euler-Lagrange equations

oL d oL
— -=0 = O—imr =0
op dt 0¢ dt
oL d oL 0 = Letmr’g={ . (constant)

or dt oF



L(r,d,i¢)=— (r + 2" + 4 2) mgcr’

OL d oL 0

or dt o

mré® + 4mi*c’r — 2mgcr—%(mr(1+4c )):O
6223 2oty — ;Zt(m?(l+4czr2))=0
mr

Now consider the case where 1nitially the particle 1s moving in a circle
: 2 L.
at height z, and /_ = mz, - mr, \|2gc with 7, = 0.
c

Consider small perturbation to the motion: r =7, + or



Some details --
622 ) d . 2.2 .
- —2mgcr +4mr-c r—E(mr(1+4c r ))—O

2 -
For: r =7, 4+ or where /_ =mz, 25 - mr, \J2gc with7, =0
c

2
gz
3
mr

To linear order: ~ 2mgcr, —bmgcor

—2mgcr = —-2mgcr, —2mgcor

l

Ami“c’r =0
—%(mf(l +4c’r)) = mSi (1+4¢r; )



622 —2m cr+4m7}202r—i(m7?(1+402r2))=O
mr’ s dt

Consider small perturbation to the motion: r =7, + or

where 1nitially the particle 1s moving in a circle

at height z, and /_ = mz, 28 = mr; \|2gc with 7, = 0.
c

Keeping terms to linear order:
—8mgcor — m5if'(1 +4c’r; ) =0

- 8gc
1+4c’r;

— Or = Acos 8g02 St+a
1+4c7r

or = or
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