PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF Online or (occasionally) in
Olin 103

Plan for Lecture 10 —Chap. 3 & 6in F & W

Lagrangian mechanics including constraints
1. Lagrangian representation of electromagnetic fields

2. Examples of Lagrangian analysis including
constraints
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In this lecture we will review Lagrangian formulations of mechanics including the effects of
electromagnetic fields and also formulations with constraints.



Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

9/16/2020

PHY 711 Fall 2020 -- Lecture 10

" |Date [F&W Reading | Topic |Assignment Due

1 |Wed, 8/26/2020 |Chap. 1 [Introduction 1 8/31/2020

2 [Fri, 8/28/2020 [Chap. 1 Scattering theory #2 9/02/2020

3 [Mon, 8/31/2020 [Chap. 1 Scattering theory #3 9/04/2020

4 |Wed, 9/02/2020 [Chap. 1 Scattering theory | \

5 [Fri, 9/04/2020 [Chap. 1 Scattering theory 4 9/09/2020

6 [Mon, 9/07/2020 |Chap. 2 [Non-inertial coordinate systems| \

7 [Wed, 9/09/2020 Chap. 3 |Calculus of Variation 5 9/11/2020

8 [Fri, 9/11/2020 [Chap. 3 |Calculus of Variation #6 9/14/2020

9 [Mon, 9/14/2020 [Chap. 3& 6 [Lagrangian Mechanics E7d 9/18/2020
|:>W|Wed, 9/16/2020|Chap. 3& 6 [Constants of the motion 48 9/21/2020

Updated schedule.




PHY 711 - Assignment #8
Sept. 16, 2020
Continue reading Chapters 3 and 6 in Fetter and Walecka.

)

1. The figure above shows a box of mass m sliding on the frictionless surface of an inclined plane (angle 8). The inclined
plane itself has a mass M and is supported on a horizontal frictionless surface. Write down the Lagrangian for this system in
terms of the generalized coordinates X and s and the fixed constants of the system (6, m, M, etc.) and solve for the
equations of motion, assuming that the system is initially at rest. (Note that X and s represent components of vectors whose
directions are related by the angle 8.)
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Homework for Monday. Note that this problem does not include electromagnetic fields
and does not need to impose constraints. It is necessary to consider the coupled motions
of the two masses.



Physics colloquium Thursday, Sept. 17, 2020 at 4 PM

John Finke, PhD

Associate Professor

Sciences and Mathematics, division of
School of Interdisciplinary Arts and Sciences
University of Washington, Tacoma

“Drug Delivery Through the Blood-Brain Barrier,
Antibody Biosensors, and Protein-Knots: Biophysics
Research at an Urban-Serving Campus During the
Pandemic”
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Our colloquium speaker for Thursday’s session is speaking on a very timely topic. Please
let me or Kittye know if you do not receive the zoom link.



Lagrangian mechanics with Lorentz forces

Summary of results (using cartesian coordinates)
L= L(x,y,z,fc,j/,z',t) =T-U

where E(r,t)=-V®(r,¢) p
c

L=1m(#* + 2 +2*)=q0(r,t)+ Li - A(r,1)
C
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T=im(@+7*+2)  U=q0(r.)-Li-A(r,)
C
_l@A(r,t)

B(r,t)=VxA(r,?)

Here is a summary of the equations we “justified” at the end

of the last lecture.




Note: In our discussion of D’Alembert’s virtual work
analysis, we concluded that

(ia_L_a—LJzo for L=L({q,}.{4,}.,t)=T-U

provided that ia—.U=O

toq,

. d oU
Here we examine how e may not be zero and can represent
104,

velocity-dependent forces.
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Here we consider how the equations of Lagrangian equations may be used to represent a
velocity dependent force.



Lorentz forces:

Lorentz force: F=g(E+1vxB)
x—component: F, =g(E, +1(vxB),)

L=L(xy,2,%7,2t)=T~U

T=4m(& +j*+2)

(d oL aLj
x-component: | —————|=0
dt ox Ox

oU d oU
Apparently: F =———4+——
PPATemy: =" T ax

Answer: U:q(D(r,t)—gl"-A(r,t)
c

d oU oU
n -

where  E(r,7)=-V®(r,t)- 10A(r,1)
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For particle of charge ¢ in an electric field E(r,¢) and magnetic field B(r,?) :

In this case, it is convenient to use cartesian coordinates

—=0
ox

B(r,t)=VxA(r,1)

7

Here are given the results without proof. In the following slides we will show that this

form of the Lagrangian is equivalent to Newton’s laws.




Lorentz forces, continued:

x —component of Lorentz force: F, = q(Ex +1(vx B)x)

Suppose: U = qCD(r,t)—gr"-A(r,t)
c
oU d oUu

Consider: F =——+——
Ox dt ox

U__, o(r,t) ¢ (x oA (r,t) 5 04,(r,t) L 204 (r,t)j

Oox Oox Ox

ox ox c
ou = —gAx(r,t)

o c
ifi_f _ qdd () _ g 6Ax(r,t)).C+ 6Ax(r,t)y . GAX(r,t)Z.+ o4, (r,z)
dt ox c dt c Ox Oy oz ot
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Detailed steps in the analysis.



Lorentz forces, continued:
0A,(r,t
v __, o0(r.1) qf . an(r,t)+y, J(r, )+Z, 04.(r,?)
ox Ox c ox ox ox
ia_q _q 6Ax(r,t)),C+ GAx(r,t)).}+ 8Ax(r,t)z.+ oA (r,1)
dt Ox c ox oy 0z ot
F-_ 90U doUu
* ox dt ox
_ GCD(r,t)_I_g . 5A},(r,f)_ o4, (r,z) L9 6Az(r,t)_ o4, (r,z) q o4, (r,z)
1 ox c 4 ox oy c ox oy c ot
_oD(r,t) qod,(r.t) L4 .[04 (r,e) o4,(r,1) N Z,(aAz (re) 6Ax(r,t)j
- Ox c ot c 4 Ox oy c Ox oz
= gE (r,0)+L(3B.(r,1)- 2B, (r,1))= g, (r,0)+ L (vxB(r, 1)),
C C
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Putting all of the terms together. In the last line we express the scalar and vector
potentials in terms of the electric and magnetic field components.



Lorentz forces, continued:

Summary of results (using cartesian coordinates)
L :L(x,y,z,)'c,y,z',t) =T-U
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Summary of what the previous analysis showed.
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Example Lorentz force

L= %m(xz +3°+ z’z)— g®(r,)+Li-Alr,?)
c

Suppose E(r,7)=0, B(r,t1)=B,z

A(r,t)= %BO(— VX + xjf)

L=1m(+ 57 +z'2)+2iBO(—xy+yx)
C

i&_L._G_L:O :i(m'_igoyj_igo)‘;:()
dt ox Ox dt 2c 2c

daor oL _, i(my'+130xj+130x:o
dt oy Oy dt 2c 2c
dt 0z Oz dt
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Here we consider a particular example of a particle moving in the presence of a magnetic
field along the z direction.



Example Lorentz force -- continued

%m(x +y +z'2)+2iBo(—5cy+yx)
C

d . q q . . g ..

—| mx——2B ———B,y=0 =>mx——B,y=0

dt( 2c Oyj 2c oY c oY
49

—mz=0 =>mz=0
dt

9/16/2020 PHY 711 Fall 2020 -- Lecture 10

Coupled equations of motion.
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Finally the equations show that the particle is moving in a circular trajectory in the x-y

plane.

Example Lorentz force -- continued

L :gm(xz +3° +z‘2)+2iB0(—Xy+yx)
C

mi=+21B
C

mj =—-L B 5
c
5 =0 Note that same equations are obtained

from direct application of Newton's laws :

my :ii‘xBoi

C
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Example Lorentz force -- continued

Consider formulation with different Gauge: A(r)=—-B,yx
L= %m(x2 +3° + 22)——B0xy

4 mx—gBoyjzo =>mx——B,y=0

dt

dt c

%mz' =0 =>mz=0
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Now consider the same magnetic field but use a different vector potential. Do you think
that the result should be the same as the previous case?



Example Lorentz force -- continued

Evaluation of equations :

(t) =X, — (Z‘;ﬂ Vocos(%t+¢)
y(t) = Yo+ 5.V sin(%t+¢)
z(t) =z, +V,.t
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mf—%Bo)ﬁO )'c(t):lfosin(%t+¢)
mj+LB5=0 y(t)=V, cos(%t + ¢)
c

Here we see that the results are equivalent. Evaluating the equations for particular initial

conditions, we find explicit functions for the trajectories.
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Comments on generalized coordinates:

L=L{{g,®}{g,0}t)

Here we have assumed that the generalized coordinates
q, areindependent. Now consider the possibility that
the coordinates are related through constraint equations

of the form:
Lagrangian: L = L({g,(0}{¢, ()}.1) ;augf{iaﬂgres
Constraints: f, = f; ({qg (z)},z) -0 lp
of .
Modified Euler - Lagrange equations : i@_L _oL + z A, /) =0
dt aqa aqo' J 6qg
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Shifting topics, we now consider examples where the generalized coordinates are related
by some constraints.



Simple example:

L(u(?),1(t)) = L mi* + mgusin 6

y L(x,y, %, y) = $m(e* + )~ mgy
f(x,y)=sinfx+cosd y=0
Note that: © =xcosd — ysinf
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Here is a simple example of an inclined plane. If we were so silly as to treat the x and y
motions separately, we would have use a constraint equation as shown.



Case 1:
L(u(t),u(t)) = +mi’® + mgusin @

ia—L,—a—L=0=mii—mgsin6’:0 jﬁ:gsine
dt ou ou
Case 2:

L(x,y,%,9)=4m(¥ + 3*) - mgy
f(x,y)=sinf x+cos@ y=0

ia_L_a_Lq-ﬂi:O:ijﬂsinH

dt ox Ox ox
ia_lj_a_L+gi:O=my+mg+icosﬁ
dt oy Oy oy

sin@ X+ cosf y=0

Force of constraint;
= A = —mg cos { {—— o
normal to incline
(cos@ i—siné j)=gsin@
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In this case we see that the constraint is related to the normal force which can be
considered as a force of constraint.



Rational for Lagrange multipliers

Recall Hamilton's principle:

S =[L({g,0}.{d, ()} .t)dt

. d oL oL
5S=0= Lot % sy ld
![g(m o, o, q"] t
With constraints: [, = f ({qa (1)} ,t) =0

Variations d¢q_ are no longer independent.
of
of; :0=28L5qcr at each ¢

o

= Add 0 to Euler-Lagrange equations in the form:

of,
220,
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Here we justify the use of Lagrange multipliers in a similar way that we used them when

discussing the calculus of variation.
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Euler-Lagrange equations with constraints:

Lagrangian: L =L({g, ()} {4, (0)},?)
Constraints: f, = f; ({% (t)},t): 0

Modified Euler - Lagrange equations : i— - Z A

J = O
aqo' aqa J aqa
Example:
Lagrangian: L= %m(ﬁz +r70° )+ mgr cos 0
Constraints: f=r—(=0
mg
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Another example of constrained motion.
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Example continued:

Lagrangian: L= %m(2 +r°0° )+ mgr cos 0
Constraints: f=r—(=0

%mﬁ—mr@z—mgcose+l:0

imr29+mgrsin6?=0
dt
r=0=r r={

= é=—%sin0

= A=ml6* +mgcosd
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Continued analysis of pendulum motion

21



Another example:

B,

Constraints: f=/¢,+(,—-(=0

— d .
' | —ml,—-mg+A=0
! dt
I i\
ﬂ | EmZZZ—m2g+/1=O
' S .
m; Figure 19.1 Atwood's machine. (| T 0, =0=10+ /1,
NP 2mm,
m, +m,
. . m, —m
b=—0,=—"—=2
m, +m,
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4 Lagrangian: L=Lm0}+im05+mgl +m,gl,

Example of Atwood’s machine with two masses and a pulley.
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Consider a particle of mass m moving frictionlessly on a
parabola z=c(x?+y?) under the influence of gravity. Find
the equations of motion, particularly showing stable
circular mation.

L(x,y,x,y) = %(x2 +7° +4c° (x)'c - yj/)2)— mgc(x2 + yz)
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Another example.
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L(x,y,x,y)= %(x2 + )'/2 +4c¢° (x)'c + yj/)z) - mgc(x2 + yz)
Transform to polar coordinates;
X =rcos¢ y=rsing
N 2 12 2.2.2 2
L(r,p,7,0) —E(l” +r°g" +4crr )—mgcr
Euler-Lagrange equations
oL d oL d

————=0 = 0——mr'g=0
op dt 0¢ dt

oL d oL 0 = Letmr’g=0_ (constant)

or dtor
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Example continued.

24



L(r, ¢, @) = %(’;2 + ¢t + 4czr2f2) — mger®
oL d oL 0

or dt or

mrd” +4mi*c*r — 2mger — %(m?(l +4c’r? )) =0
6223 +4mi’c’r — 2mger — %(ml?(l +4c%r? )) =0
mr

Now consider the case where initially the particle is moving in a circle
. 2 s
at height z, and ¢, = mz, 4gsnmﬂmgcwﬁhQ:0
c
Consider small perturbation to the motion: » =1, + or
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Continued
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Some details --
? 2 2 d 2.2
z__2mocr+4mr-cr——(mr{l1+4cr )|=0
mr® & dt( ( ))

2 o
For: r =7, +0r where /_=mz, =5 = mr; \J2gc with 7, =0
c

2
z

3
mr

To linear order:

= 2mgcr, —bmgcor

—2mgcr = -2mgcr, —2mgcor

.2 2
dmr-cr =0

—%(ml?(l +4c*r? )) & m5f(l + 4021’02)
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Continued

26



622 —2m cr+4m1?202r—i(m1?(1+4czr2))=0
mr’ & dt

Consider small perturbation to the motion: » =7, + or

where initially the particle is moving in a circle
. 2 oy
at height z, and ¢, =mz,, ,_g =mr; \[2gc with 7, =0.
c

Keeping terms to linear order:

—8mgcor — mﬁi"(l +4c’ry ) =0

51"':—%51”
1+4cr
8gc
= or=A4cos| |[—55t+a
1+4cr
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Approximate solution.
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