PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF Online or (occasional)
in Olin 103
Plan for Lecture 13 — Chap. 3&6 (F&W)
1. Phase space
2. Liouville theorem

3. Examples

9/23/2020 PHY 711 Fall 2020 -- Lecture 13

In this lecture we will introduce the notion of phase space, prove an important theorem
concerning the density of particles in phase space, and show some interesting examples.
The slides at the end are included only for those of you who may be interested in statistical

mechanics.



Physics Colloquium — Thursday, September 24, 2020

Online Colloquium: “Discussion on Improving the
Physics Colloguium.” — September 24, 2020 at 4 PM

PROGRAM

Students registered for PHY 301 and 601 and all interested participants in
the physics colloquium series will meet to discuss ways in which the
colloguium series can be improved. A similar meeting last semester,
resulted in shifting the meeting time from Wednesdays at 3 PM to
Thursdays at 4 PM and a significant increase in student involvement in
hosting colloquium speakers. But there is always room for further
improvement. Bring your thoughts and ideas to the discussion.

-- Bring your ideas and suggestions --
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Reminder about colloquium on Thursday.



Course schedule
(Preliminary schedule - subject to frequent adjustment )

[ [Date IF&W Reading [Topic |Assignment Due

[1 |Wed, 8/26/2020 [Chap. 1 (Introduction #1 8/31/2020

[2 |[Fri, 8/28/2020 [Chap. 1 [Scattering theory #2 [9/02/2020

[3 [Mon, 8/31/2020 [Chap. 1 [Scattering theory #3 [9/04/2020

[4 |[Wed, 9/02/2020|Chap. 1 [Scattering theory | |

[5 [[Fri, 9/04/2020 |[Chap 1 [Scattering theory 4 [9/09/2020

[6 [Mon, 9/07/2020 [Chap. 2 INon-inertial coordinate systems || |

[7 [Wed, 9/09/2020/[Chap. 3 [Calculus of Variation #5 [9/11/2020

[8 [[Fri, 9/11/2020 |[Chap. 3 [Calculus of Variation #6 [9/14/2020

[9 [Mon, 9/14/2020/[Chap. 3& 6 |[Lagrangian Mechanics # [9/18/2020

[10[Wed, 9/16/2020/[Chap 3 & 6 |[Lagrangian & constraints [#8 [9/21/2020

[11[[Fri, 9/18/2020 |[Chap 3&6 |[Constants of the motion | |

[12[Mon, 9/21/2020/[Chap 3 &6 |[Hamiltonian equations of motion|[#9 [9/23/2020
»W|Wedi 9/23/2020 [Chap. 3 &6 [Liouville theorm #10 [9/25/2020
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There is a short homework problem due Friday.



PHY 711 -- Assignment #10

Sept. 23, 2020
Continue reading Chapters 3 and 6 in Fetter & Walecka.
1. Choose one of the literature papers discussed class, by H. C. Andersen or by S. Nose' and

derive to your satisfaction the Hamiltonian function from the given Lagrangian corresponding to
constant pressure or constant temperature simulations, respectively.
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Note you need only read a small part of one of the papers. Of course perhaps you will be
interested to read more.... The papers are available from our webpage.



With the Hamiltonian formalism comes the notion
of phase space --

H=H({g,O}{p,®O}1)

94, _ OH = constant ¢q_ if oH _ 0
dt  0p, &Py

dp, __OH = constant p_ if oH _ 0
dt aq, q,

dH OH . OH . oH

— = —q4,+t——Pp, |+T—
dt ~\ 0q, op,, ot

dar ZaF. oF . +6F OF OH oF OoH Jr8_F
oo “'\og, dp, op,6 Oq,) Ot
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Now an interesting addition property of the Hamiltonian formulation.



For an arbitrary function: F = F({qa 0} {p. ()} ,t)

dr OF .  OF .\ oF OF 0H _OF oH ), oF
= >\ 0q, Op, Op,0q,) Ot

Short and notation -- Poisson brackets

OF 0G OF oG
FG],, = - =-[GF
LGl ;[8% P, P, ﬁqaj [&F L
dF oF
hat: - =[FH], +=—
So that ” [FH],, + po
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Introducing the Poisson Bracket.



Poisson brackets -- continued:

o

oF 0G OF oG
FGl,, = - =—|GF
[7.Glr Z[qu op, op, 0615] (GFL

Examples:
[x’x]PB =0 [X,px ]PB =1 [x,py ]PB =0
[LX’Ly pp L

zZ

Liouville theorem

Let D =density of particles in phase space :
dD oD
dt

several approaches.
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= -[pH],;+=—=0 In the following slides we will
ot justify this statement using

Examples followed by introducing the Liouville theorem.



Phase space

Phase space is defined at the set of all

coordinates and momenta of a system:

({4.0}{p.)})
For a d dimensional system with N particles,

the phase space corresponds to 2dN degrees of freedom.

The notion of density of particles in phase space is
simply the ratio of the number of particles per unit phase
space volume. It seems reasonable that under
conditions where there are sources or sinks for the
particles, that the density should remain constant in
time.
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Notion of phase space



Phase space diagram for one-dimensional motion due to
constant force

L | | | |

1 !2 3 X 4 5
H(x.p)=2-—Fx  p=F &=L

Poi

1
p:i(t) = py; + Fyt x; (1) = x,; + t+§F0f2
m
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Example of time evolution of phase space.



Phase space diagram for one-dimensional motion due to
spring force

1.5+

p

0.5

2
1 . :
H(x,p)=p—+—ma)2x2 p:—ma)zx x:£
2m 2 m
p.(1) = py, cos(wt +6,,) x. (1) :&sin(wt—i—@m)
mao
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Another example of time evolution of phase space.
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Liouville’s Theorem (1838)

The density of representative points in phase
space corresponding to the motion of a system of
particles remains constant during the motion.

dD (oD . oD . ) oD
> ot

According to Liouville's theorem : d? =
t
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Denote the density of particles in phase space: D = D({qa (t)}, {pg (t)}, t)

Application to the density of phase space — Liouville theorm.
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Liouville’s theorem

A 1
(x,p*+4p)

(x+Ax,p+A4p)

[y X oD

—> or

—

(x,p) pI

(x+4x,p)
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\ 4

Diagram of flow in phase space.
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N

Liouville’s theorem -- continued I

(x,p*+4p)

(x+Ax,p+Ap)

p X oD

—> o

—

(x,p) ’1

(x+A4x,p)

X

ot

=—Z5x-"=p

ox op
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>

oD . . oy
— = time rate of change of particles within volume

= time rate of particle entering minus particles leaving

Some details.

13



N

Liouville’s theorem -- continued I

(x,p+4p)

(x+Ax,p+Ap)

p X oD

—> o

—

(x,p) p‘[

(x+A4x,p)

X
oD oD . oD
ot ox op
oD oD . oD . dD
ot 0Ox op dt
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More details.
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Review:
Liouville’s theorem:

Imagine a collection of particles obeying the
Canonical equations of motion in phase space.

D=D({g,qsy bip, - Psx b1)

Liouville's theorm shows that :

dD X .

d_ =0 = D 1s constant in time
t

Note that we are assuming that no particles are
created or destroyed in these processes.
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Let D denote the "distribution" of particles in phase space :

Summary of Liouville theorem.

15



Another proof of Liouville’s theorem:

- m) VP
Continuity equation :
oD

l ‘ o =-V. (VD)
vp

Note :in this case, the velocity is the 6 N dimensional vector :

V= (flafza'--fNaplapza---pN)
We also have a 6 N dimensional gradient :
V=(V,.V, ..V, .V, .V, ...V, )
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Another more formal derivation of Liouville

16



.y [ N <p,.z>>}

Jj=1 _aq]‘ apj

sy [ sv [ 6a. op.
:_Z G_qu+8_Dpj _DZ 9; +&
1 0q; op,

dq; 0p;

J=1

9/23/2020

o9, op; O°H O°H
+ = + =0
dq; Op; 0q,0p,

op,;0q;

PHY 711 Fall 2020 -- Lecture 13

More details.

17



_:_Z{GD

aq/

j=1

D_ 5D
ot 2,

oD o,
op ;

aq,

J=1

9/23/2020

3N
:>aa—lt)+2|:aD g.+

o, U
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aD . }_d_D

=0

Derivation of Liouville theorem

18



dD _
dt
Importance of Liouville’s theorem to statistical
mechanical analysis:

0

In statistical mechanics, we need to evaluate the
probability of various configurations of particles.
The fact that the density of particles in phase
space is constant in time, implies that each point
in phase space is equally probable and that the
time average of the evolution of a system can be
determined by an average of the system over
phase space volume.
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Comment.

19



Modern usage of Lagrangian and Hamiltonian formalisms

J. Chem. Physics 72 2384-2393 (1980)

Molecular dynamics simulations at constant pressure and/or
temperature®

Hans C. Andersen

Department of Chemistry, Stanford University, Stanford, California 94305
(Recaived 10 July 1979; accepted 31 October 1979)

1n the molecular dynamics simulation method for fluids, the equations of motion for a culletion of
particles in a fixed volume are solved numericaily. The en¢rgy. volume, and number of particles are
constant for a pacticular simulation, and it is assumed that time averages of properties of the simulated
fluid are equal fo microcanonical ensemmble averages of the same properties. In some situalions. it is
desitable to perform simulations of a fluid for particular values of temperature and/or pressure or under
conditions in which the energy and volume of the fuid ean fluctuate. This paper proposes and discusses
three methods for performing molecular dy ics si under dini of constant temperature
and/or pressure, rather than constant epergy and volume. For these three methods, it is shown that time
averages of properties of the simulated fluid are cqual 1o averages aver the iscenthalpic—ischaric,
canonical, and isothermal-isobaric ensembles Each method is a way of deseribing the dynamics of &
certain number of particles i a volume element of a fluid while taking into account the influence of
swrounding particles in changing the energy and/or density of the simulated volurne element. The
infl of the surroundi is taken into account without introducing unwanted surface effects.
Examples of siluations where these methods may be useful are discussed.
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This paper shows an example of Lagrangian and Hamiltonian mechanics use to make
realistic simulations of real materials.




“Molecular dynamics” is a subfield of computational
physics focused on analyzing the motions of atoms in
fluids and solids with the goal of relating the atomistic
and macroscopic properties of materials. Ideally
molecular dynamics calculations can numerically
realize the statistical mechanics viewpoint.

Imagine that the generalized coordinates {qa (t)} represent
N atoms, each with 3 spacial coordinates:
L=L({q,0}.{4,(0)},t)=T-U

For simplicity, it is assumed that the potential interaction

is a sum of pairwise interactions:

Uir®) = ?;_.: wir,,) . (2. 1)
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Brief introduction to the approach of H. C. Andersen

21



>

L= L({ri(t)}’ {i.i(t)})z z%mi|fi|2 _zuqri _rj‘)

i i<j
=>»From this Lagrangian, can find the 3N coupled
2" order differential equations of motion and/or
find the corresponding Hamiltonian, representing
the system at constant energy, volume, and
particle number N (N,V,E ensemble).
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Schematic drawing of system modeled.

22



Lagrangian and Hamiltonian forms
L= L({ri (t)}’{i?(t)}) =24, |l.'i|2 _2”(‘17‘ —rj‘)
i i<j
Euler-Lagrange equations:
dzri _ ' _ i rj
g 2l rj‘)\lz x|
Hamiltonian formulation:
p, =mr,
H = ZM+Zu(‘r —rD
T o2m; S
Canonical equations:
@ — b, @ - _ v( _ ) I T,
e m, dt gu ) v, x|
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Lagrangian and Hamiltonian of particle system.

23



Digression on numerical evaluation of differential equations
Example differential equation (one dimension);

i’;f = 1(0) Let t=nh (n=123..)
x,=x(nh), £, = f(nh)

A

Euler's method :

1
X . =x +hv +—h
n+l n n 2 f;l D_E.n
vn+1 :vi’l+hf;l X ?

Velocity Verlet algorithm :

| T
_ 2
xn+1—xn+hvn+5h I i -
7 >
1
Vn+l = vn + Eh(ﬂl + f;ﬁ—l)
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The equations cannot generally be solved analystically so that numerical methods must be
used. This slide shows some of the ideas for numerical devaluations.



H. C. Andersen wanted to adapt the formalism for
modeling an (N,V,E) ensemble to one which could
model a system at constant pressure (P).

V constant

P constant,
V variable
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Back to the ideas of H. C. Andersen.
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PV contribution to
Andersen's clever transformation : potential energy

Letp, =r,/0"

= L(fr O} {E (1)) = Z—m i = Sulr -,

i<j

- Lo 0 5,0}0.0)- O S imp[ =Tul0 o, - |+ 210" -a0

kinetic energy of
“palloon”
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Andersen’s approach of “extending the Lagrangian to include pressure effects.



i i<j

T, :aa_é‘i: sz/z.pi
oL .
H:@:MQ
‘2 2
szi:%jL;”(Qm‘Pi—Pj‘)ﬁL?M+aQ
&_ T d_Q_E
dt _miQm dt M
ﬂ:_ /3 (0o —p P,—P;
dt Q ;u (Q ‘P, pj‘)‘pi—pj‘

d_Hziz |7‘,-|2 1
di  30% 2m,~Q2/3 307" &

PHY 711 Fall 2019 -- Lecture 12

9/20/2019

L=L(fp, 0} 5,01.0.0)= 0** T tm o[ =S ul@"lp, ~p |)+ 1MQ* ~ a0

ZM'<Q1/3‘Pi _pj‘)‘pi _pj‘_a

27

Some details.
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Relationship between system representations

Scaled Original
of) = )
0"p() = ()
w; /Ql/3 = P;

Equations of motion in “original” coordinates:
dar, _p 1 diny

l

dt m 3" dt

1

dp, _ TN )L din
?— < ri_r;‘u qr,‘ r/‘) 3pz dt
2 .
=y (P el )
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More details.



Physical interpretation:

a < Imposed (target) pressure

%[%ZM _%Z‘ri -, }u '(‘rl. -, ‘)] < Internal pressure of system
i Jj<i

mi
Time dependence

dav 1(2 P 1 !
e U ALR)

Jj<i

Averaged over many time steps:

I e ).

Jj<i
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Here alpha represents the controlling pressure.

29



Example simulation for NPT molecular dynamics
simulation of Li,O using 1500 atoms with 6=0

P . P . -

- P P -
2 3 e e

W T % W % W% % W % %

% % % 9

-

W W

- - -

w% % W %
W W % % % W W % W %

E.‘

-

N W% %

- - -

- - . -
w W % % & W
- - - - - =g - e -

W W g Gy W G G G N O
W % W % % B % B B %

W W W % % B % % W N

B W% W W W% % % % ¢

% %

- - - - -

W N W N W 9%

&% W % %

-

-

- -

-

Pair interaction potential
C. qq.
_ 1 Py ij i1
uy(r;)=Aye” ™ ——+

o

Use LAMMPS code
http://LAMMPS.sandia.gov
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An illustration of simulation for a particular system.
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.l

10800 f‘

10750 H
10700 1
10650

10600

V (A3)

t (ps)

9/20/2019

100

200

300 400
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500

Plot of volume and pressure variation for a particular simulation.
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MoLECULAR PHYsIcs, 1984, VoL. 52, No. 2, 255-268

A molecular dynamics method for simulations in the
canonical ensemblet

by SHUICHI NOSE}

Division of Chemistry, National Research Council Canada,
Ottawa, Ontario, Canada K1A 0R6

(Received 3 October 1983 ; accepted 28 November 1983)

A molecular dynamics simulation method which can generate configura-
tions belonging to the canonical (T, V, N) ensemble or the constant
temperature constant pressure (T, P, N) ensemble, is proposed. The
physical system of interest consists of NV particles (f degrees of freedom), to
which an external, macroscopic variable and its conjugate momentum are
added. This device allows the total energy of the physical system to
fluctuate. The equilibrium distribution of the energy coincides with the
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Another famous paper controlling the temperature rather than the pressure.

32



Nose''s Lagrangian:

L({r},s,{x},5) :%Zmlszl’f +%Q§2 —¢(r. ) —(f + DT, Ins

velocity scaling fictitious mass

Equations of motion:
i (m;s® F,)= “'Eés
dt ar;
2 _ 1 o4 24,
YUomstor, s i

Q5= Y mse2— (-——f s Te“,
: s
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Nose”s idea to control the temperature using an “extended” Lagrangian.



Time averaged relationships
(f +DKT,,
S

Os = Zml.si'f -
(f + DT,

(05)=0 = <Zmis1‘i2> _ <—q>

S
( z m:sa i‘2> B l)kTeq<1s>
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Showing how the scale factor s behaves on averate.



Time averaged relationships

< % m:s2 lhz) i (f-{; 1 )kTeq<1s>

Hamiltonian

i Zmis2

20

2 .
where p, =m,s°r,
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Hy=Y i +<;a5(r)+3'12+(f+1)kTeq Ins,

p, =0s

More details.

35



In statistical mechanics, the thermodynamic functions can be analyzed
in terms of a partition function. A canonical partition function for a system

with N particles at a temperature 7, can be determined from the phase space

integral:

_ 1 3N— 33N — ~F{TL{p;})/kT,
Z —mjd rd'pe

c

where Z((E}.(5.))= X Pr p(fih

For such a canonical distribution the average value of a quantity F ({F,-} ,{ﬁi })
is given by
11

<F({FI}’{I_’I})>C :Z_ﬁ 7 dzN[3 efff({ﬁ}v{ﬁ,-})/kquF({Fi}’{E})

Nose’ was able to show that his effective Hamiltonian
well approximates such a canonical distribution.
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Some references to the related statistical mechanics developments.
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Relationship between Nose”s partition function and
the canonical partition function:

_(fi ¥ ( :;Q)m exp (E[kToq) Ze-
eq

\ J
I

constant factor

Some details:
Starting with partition for microcanonical ensemble:

T B B
7;;5 J. £ 1. f 1_f ___r=g=/\" 17\ . Pﬂ s /2 . anEm _ -\
) NlJ g ) G j ap j ar U\L.'ijz P\r)'ri—'f‘\]'rlﬂ(leqlll—l}}.
9/20/2019 PHY 711 Fall 2019 -- Lecture 12 37

More statistical mechanics.

37



Details.

Zéig'}!?‘,g""-"gﬁ'ﬁgﬁ:—‘:/“:‘ 'pzz 2 Ais _L';z.; §F2% .-:; =—.=:='._'\
Ni¢ s ==y = “\szisz A ZQ PR eq it L‘/

Change variables: p, =

v |2

:—J‘dpv ds d’"p &7 sfé[z fm +¢({F})+%+(f+l)k]’eq lns—EJ

—5,)
Note that | ds 5(g(s))=|ds ——2=
Jisotsonfis F
—2
where (f + DT, Ins, :E—f—é— [ zp—n’1l—¢({f})
Pe NPy
S, = exp
(f +DAT,
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When the dust clears --

1 2rQ\12
Z= 7+1) (kTeq) exp (E[kTeq) Z,-

(
\ J
[

constant factor

= The Nose’ ensemble should sample phase
space in the same way as does the canonical
ensemble at T,

9/20/2019 PHY 711 Fall 2019 -- Lecture 12
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More details.
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From LAMMPS simulation (using modified Nose’ algorithm)

330 T T T T

'2.dat'u 2:3 ——
325
320
315
310

305

—
é 300 4
= 295 -
290 4
285 B
280 4
275 1 | 1 1 1
0 100 200 300 400 500 600
t (ps)
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How does this really work? We see that the approach allows fluctuations in the
temperature, but the average is apparently controlled.
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