PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM  MWF Online or (occasionally)
in Olin 103

Plan for Lecture 16 — Chap. 4 (F & W)

Analysis of motion near equilibrium
1. Normal modes of vibration for simple systems
2. Some concepts of linear algebra

3. Normal modes of vibration for more complicated
systems
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In this lecture we will analyze systems near equilibrium. This system represents a lot of
physical systems and has a rich toolbox of mathematical formalisms.



Physics Colloquium Thursday, October 1, 2020

Online Colloquium: “Designer defects: engineering color
centers in crystals as nanoscale optical sensors™ —
October 1, 2020 at4 PM

Dr. Claire Allison McLellan

Wu Tsai Postdoctoral Scholar, Dionne Laboratory
Stanford University, Stanford, California

Wake Forest University Alum

Thursday, October 1,2020 at 4:00 PM

Dr. McLellan recommends the following published papers from her group
for topical information:
https://pubs.acs.org/doi/abs/10.1021/acscentsci.9b00300
https://pubs.acs.org/doi/abs/10.1021/acs.nanolett.5b05304

A review paper on this topic may also be of interest:
https://www.nature.com/articles/s41586-020-2048-8
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Thursday’s colloquium -- WFU alum



Course schedule
(Preliminary schedule -- subject to frequent adjustment.)
|7|Date [F&W Reading| Topic [Assignment [Due
[ |Wed, 8/26/2020 [Chap. 1 Introduction 1 [8/31/2020
2 [Fri, 8/28/2020 |[Chap. 1 [Scattering theory 2 [9/02/2020
|3— Mon, 8/31/2020 |Chap. 1 Scattering theory #3 9/04/2020
|4— Wed, 9/02/2020|Chap. 1 Scattering theory
5 |Fri, 9/04/2020 |Chap. 1 [Scattering theory 4 l9/09/2020
[6 [Mon, 9/07/2020 [Chap. 2 INon-inertial coordinate systems | |
[7 [Wed, 9/09/2020 [Chap. 3 [Calculus of Variation 5 [9/11/2020
8 [Fri, 9/11/2020 [Chap. 3 [Calculus of Variation 46 [9/14/2020
19 [Mon, 9/14/2020/[Chap. 3& 6 |Lagrangian Mechanics Ed l9/18/2020
[10|Wed, 9/16/2020 Chap. 3& 6 |Lagrangian & constraints ER) [9/21/2020
[11][Fri, 9/18/2020 |[Chap.3& 6 |[Constants of the motion | |
[12|Mon, 9/21/2020/[Chap. 3& 6 [Hamiltonian equations of motion  [#9 [9/23/2020
[13|Wed, 9/23/2020|Chap. 3 & 6 |Liouville theorm 10 [9/25/2020
[14]Fri, 9/25/2020 |[Chap.3& 6 |[Canonical transformations | |
[15|Mon, 9/28/2020 Chap. 4 [Small oscillations about equilibrium|#11 [10/02/2020
» [16]Wed, 9/30/2020Chap. 4 INormal modes of vibration #12 [10/05/2020
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We are starting the material covered in Chap. 4. The assigned homework will be covered
in Friday’s lecture and due on Monday.



PHY 711 -- Assignment #12

Sept. 30, 2020
Finish reading Chapter 4 in Fetter & Walecka.

1. Consider the system of 3 masses (ms=mz=m3=m) shown attached by elastic forces in the right triangular configuration
(with angles 45, 90, 45 deg) shown above with spring constants k and k". Find the normal modes of small oscillations for
this system. For numerical evaluation, you may assume that k=k".
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Extension of ideas discussed today to 2 dimensions.



The following slides quickly review what we covered in
Lecture 15 --
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Non-trivial example of coupled oscillator in the form of a linear
molecule

k k
Q. 010
SN xl 'f 12 'f 23

> X

> X3

1, 1 5, 1
L= Emle +5m2x§ +5m3x32

1 1
_Ek(xz X _612)2 _Ek(x?, —X _623)2
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Example with 3 masses connected with springs moving in one dimension



1, 1 5, 1
L :Emlxl2 —kzmzxz2 +Em3x32

1

1
_Ek(x3 —X _fzs)2

——k(x,—x,—0,)
2 ( 2 1 12)
Let: x,=>x—x x,>x,—Xx —l, X —>x-x =,
1 ., 1 L, 1 ., 1 2 1 2
L :5m1x12 +Em2x§ +5m3x32 —Ek(x2 —xl) _Ek()% —x,)
Coupled equations of motion using simplified variables:
mXx, = k(x2 —xl)
m,%, = —k(x, —x,)+k(x, —xz) =k(x,—2x, +x,)

myiy = —k(x; — x,)
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Analyzing the equations of motion.



Coupled equations of motion :

mx, = k(xz - xl)

mx, = _k(xz - xl)+ k(x3 X ) = k(xl —2x,+ x3)
myX, = —k(x3 _xz)

Mathematical methods for solving these coupled linear
differential equations:

Let x,(1)=X"e™
—aw,m X} :k(Xza _Xla)
—@?m, X% = k(X7 —2x7 + X7

~wim X =—k(x7 - x?)
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Coupled differential equation and tricks for solution.



Coupled linear equations:
—?m X" =k(xs - x7)
—?m XS = k(X —2X7 + X7
- gm Xy =—k(x; - X5)

Matrix form:

k—a’m, —k 0 X/
—k 2k —a’m, —k X5 1=0
0 —k k—aw’m, | X{
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Resulting linear equations also written in matrix form.



Matrix form:

k—aw'm, —k
—k 2k —a’m,
0 —k

More convenient form:

Let ¥, =mX,

Equations for Y take the form:

2 o
K, — @, —Ki, 0 Yl
2 a | _
—K 2K22 -, —K; Yz =0
2 a
0 Ky K3 — @, Ys
k
where k=K, =———
' A /mlmj
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—k || X7 |=0

2 a
k—aw m )| X;

The original equations are not symmetric.
equations take a symmetric form.

With this transformation, we can make the

10



Rearranging the equation to an eigenvalue problem:

(04 o

Ky, —Kiy 0 Yl Yl
a | _ .2 a

—Ki 2K22 BLYE Yz =, Yz
(04 o

0 Ky K )\ 1 Y,

Special case for CO, molecule -- m; =m, =m, and m, =m,

o o

Koo —Koc 0 Yl Y1
a | _ 2 a

—Koc 2Kee Koo ||V |=@,| L
[04 (04

0 —Koc Koo )\ V3 Y
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More details for our case.

11



Eigenvalues and eigenvectors:

(with help from Maple)

vy (B ()
w! =0 Y, |=N| 1 |, |X3|=N"|1
Y, \/Z: X, 1
Y7 1 X! 1
a)zzk— Y |=N, 0|, |XJ|=NY, 0
Mo Y 1) x? -1
Yl3 X13 1
o=k 2k Y =Ny =25 |, | XS = NG| 2
my — Me Y; X33 1
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Visualization of the solution for our case.
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Which of the following statements are false?

a.
b.
C.

9/30/2020

Molecules always have one zero frequency mode.
CO, really has more than 3 normal modes .

Some molecules have more than one zero frequency
modes.

The normal modes of molecules are only of academic
interest and cannot be measured.
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Finding eigenvalues/eigenvectors by hand --

Mya — Z()(ya
(M-A7T)y" =0
‘M -1 = det(M — /1“1) =0 = polynomial for solutions 1“
For each « and A“ solve for the eigenvector coefficients y*
Example
A —AB 0
M=|-J4B 2B —J4B =t gt
mg mc
0 — AB A
A-1% —JAB 0
M- 2°U=|-V4B 2B-2° —AB|=2"(A" - 4)(A“ —(4+2B))

0 —AB A-A°
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In general, we will want help from computational tools, but we can illustrate the concepts
for 3 dimensions.



Example -- continued

A —VAB 0
M=| 4B 2B —JAB AEi BEi
mg mc

0 —JAB A

A-A% —JAB 0

M—2T|=|~/4B 2B-2“ —JA4B|=2"(A~4)(A“~(4+2B))
0 —AB A-1"
Solving for eigenvector corresponding to 1“ = A' =0
A —AB 0 v
01 1 1 B
—AB 2B —JAB| y. =0 jL?l:Lc?z\ﬁ
| Ye o Jc A
0 —AB A Yo2

Note that the normalization of the eigenvector is arbitrary.
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Finding the polynomial of the eigenvalues and solving, followed by solving for the
eigenvector components.



Summary of results for linear CO, molecule
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Summary of the results for this case.
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General solution :
xi(t) — m Z CaXiae—ia)at

For example, normal mode amplitudes

C?% can be determined from initial conditions
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The general solution will depend on initial values or boundary values.
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Digression:

Eigenvalue properties of matrices My, =4y,
Hermitian matrix: Hy_ =1y, H, = H*ji
Theorem for Hermitian matrices:
H _
A, havereal valuesand y, -y, = 0,
Unitary matrix: Uy, =4y, uu” =1
[4,|=1 and y. -y, = 6,
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Digression on linear algebra theory.
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Digression on matrices -- continued

Eigenvalues of a matrix are “invariant” under a similarity

transformation

Eigenvalue properties of matrix: My, =4y,

Transformed matrix: M'y', =4",y',

If M'=SMS™ then A' =4, andS7'y', =y,
Proof SMS'ly' =4"y",

M(STy', )=4"(Sy")

This means that if a matrix is “similar” to a Hermitian matrix,
it has the same distribution of eigenvalues.

9/30/2020 PHY 711 Fall 2020 -- Lecture 16 20

Similarity transformations used to analyze our system.

20



Example of a similarity transformation:

Original problem written in eigenvalue form:

kim  —k/m, 0 X7 X7
—k/m, 2k/m, —kim, | XJ|=a|X{
0 —k/m, kim, )| Xy X7
Let S=| 0 m, 0 [; SMS'=|-x,
0 0 Jm 0
Let Y=SX
Kn —Kp 0 Yla Yla
—K, 2K, —Ky|Y |= a)02( Yy
0 Ky K3 Y3a Y3a
where «, =k, = k
i~ R /—mimj
9/30/2020 PHY 711 Fall 2020 - Lecture 16
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Details for our case..
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Note, here we have defined S as a transformation
matrix (often called a similarity transformation matrix)

Sometimes, the similarity transformation is also unitary so that
u'=u"

Example for 2x2 case --

cos@ sind 4 ..y [cos@ —sin®
—sin@ cos@ sinf cosd

How can you find the transformation that diagonalizes a
matrix?

A B 0
M|

Example -- M=
C 0 4,
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Another example of similarity transformation for the 2x2 case.
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Example - M:[A Bj M'z(ﬂl 0)

B C 0 4
i cos@d sind
M'=UMU for U= .
—sin@ cos@

M- Acos’ @+ Csin® @+ Bsin20 —Bcos26—1(C - A)sin26
—Bcos20-1(C— A)sin20  Asin’ @+ Ccos’ @ — Bsin26

= choose @ =tan™ (Q—BJ
C-4

= A4, = Acos® 0+ Csin®  + Bsin26
= A, = Asin’ @+ C cos” @ — Bsin260

Note that this “trick” is special for 2x2 matrices, but numerical
extensions based on the trick are possible.
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Only for 2x2 case.

23



Note that transformations using unitary matrices are often
convenient and they can be easily constructed from the
eigenvalues of a matrix.

Suppose you have an N x N matrix M and find all N eigenvalues/vectors:
My” = A%y“ orthonormalized so that <y"’ |yﬂ> = 5a,/3

Now construct an N x N matrix U by listing the eigenvector columns:

wow oo ooy
yl yz “ee yN yz* yz* .o yN*
Uu=|"? 2 U'=|"! 2 N = by construction U'U=1
v Vv ot Wy DA T
A0 -0
. 0 A2 -« 0
Also by construction U'MU=| | )
o 0 ... A
9/30/2020 PHY 711 Fall 2020 -- Lecture 16 24

Comment on unitary matrices in general.
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Additional digression on matrix properties
Singular value decomposition

It is possible to factor any real matrix A
into unitary matrices V and U together

with positive diagonal matrix X

A=UxV!
o 0 - 0
g @ 0
0O 0 - o,
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An unrelated digression that may be useful — singular value decomposition.
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Singular value decomposition -- continued

Consider using SVD to solve a singular

linear algebra problem AX=B
A=UzV"

X = Z Vi@

O.

iforo; >¢ i

Details are complicated ....
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Digression continued.
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Consider an extended system of masses and springs:

i+1

Note : each mass coordinate is measured relative

to its equilibrium position x;

L=T-V=2m> e L (- )
2 =) i 2 — i+l i

Note: In fact, we have N masses; x, and x,

+1

which will be treated using boundary conditions.
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Another example; this one is in your textbook.



x,=0 and x,,, =0

From Euler - Lagrange equations :
mi, = k(x, —2x,)
mit, = k(x, —2x, +x,)
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Details for N masses.
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Matrix formulation --

Assume  x,(f)=X.e ™

X, 2 -1 0 - 0) X,
X, -1 2 -1 - 0| x,
m 5| . . . . . .
— = . : : .
k
X, e =120 1|l X,
X, e 0 -1 2 )0 X,

Can solve as an eigenvalue problem —

(Why did we not have to transform the equations as
we did in the previous example?)
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Form of matrix equations.

29



2 -1 0
-1 2 -1
> M:=| 0 -1 2
0 0 -1
10 0 0

’7.‘» Eigenvalues(M);

9/30/2020

0
0
-1
2

-1

> Wwith(Lineardlgebra);

o
0
0 |;
-1
2

1

2

3
2-3
2+3 |

PHY 711 Fall 2020 -- Lecture 16
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Finding eigenvalues with Maple.
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This example also has an algebraic solution --

From Euler - Lagrange equations :

mx; = k(xj+1 —2x; + xj_l) withx, =0=1x,,,

TI'y . xj (t) — Ae—ia)t+iqaj

_a)2Ae—ia)t+iqaj zﬁ(eiqa _2+e—iqa )Ae—ia)t+iqaj
m

—w’ = %(2 cos(qa)—2)

Is this treatment cheating?
, 4k . ,(qa
> w =—sIn"| — a. Yes.
m b. No cheating, but we
are not done.
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Analytic methods for this highly symmetric case.
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From Euler-Lagrange equations -- continued:

mx; =k (xj+1 —2x; + xj_l) with x, =0 =xy,,
N a4k
Try:  x;(t)=Ade™™™ =S = —ksm2 (ﬂj
m 2
_— 4k
Note that:  x,(¢) = Be 1 = @’ = —sin’ ((%aj
m

General solution:
xj (l‘) _ m(Ae—iniqaj + Be—iwt—iqaj)
Impose boundary conditions:
x,(t) = ‘R(Ae_i“” + Be_i””) =0

xN+1(t) = E}{(Ae—iwmiqa(NH) + Be—iwt—iqa(NH)) -0
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Setting the boundary values.
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Impose boundary conditions -- continued:
X (1) = %(Ae_i”’ + Be""’”) =0
Xy () = R A 90 4 peer i) g
= B=-4
Xy, () = ER(Ae—iwt (eiqa(N+1) _ e—iqa(N+1))) _0
= sin(qa(N + 1)) =0
= ga(N+1)=vzr where v=0,12---

q= \%/A
1 N +1
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Boundary conditions continued.

33



Summary of results:

, 4k .,
= W, =—sIn

v=01,.N

S x, =N| 2idsin e
m 2(N +1) N +1

2 - R
: : /_/"' .
T :
- :
1+~ B —— s -
Q A |
H /.// H
- H
0.5 / 3 B
e ; :
0 i i i i i
0 1 2 3 4 5
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Plot of the results.
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