PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF online or (occasionally) in
Olin 103

Discussion for Lecture 17: Chap. 4 (F&W)

Normal Mode Analysis
1. Short digression on singular value decomposition

2. Normal modes for extended one-dimensional

systems (correcting some errors in previous
slides)

3. Normal modes for 2 and 3 dimensional systems
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The updated Spring 2021 undergraduate calendar is available here [PDF]. Key points include:

» Undergraduate move in will run from Jan. 23-26.

» Undergraduate classes will start Jan. 27.

» We will forgo spring break to help preserve the health of our community but will add two
weekdays off during the semester.

» Exams that follow the undergraduate schedule will run from May 8-15.

+ Move out will conclude May 16.

» Commencement for the Class of 2021 will be held May 17 (pending future public health
guidance).

» Commencement for the Class of 2020 will be held May 22 (pending future public health
guidance).
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Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

Date F&W Reading [Topic Assignment Due
1 (Wed, 8/26/2020|Chap. 1 Introduction #1 8/31/2020
2 |Fri, 8/28/2020 |Chap. 1 Scattering theory #2 9/02/2020
3 [Mon, 8/31/2020 (Chap. 1 Scattering theory #3 9/04/2020
4 |Wed, 9/02/2020|Chap. 1 Scattering theory
5 [Fri, 9/04/2020 |Chap. 1 Scattering theory #4 9/09/2020
6 (Mon, 9/07/2020 |Chap. 2 Non-inertial coordinate systems
7 Wed, 9/09/2020 |Chap. 3 Calculus of Variation #5 9/11/2020
8 |[Fri, 9/11/2020 |Chap. 3 Calculus of Variation #6 9/14/2020
9 Mon, 9/14/2020 [Chap. 3 & 6 |Lagrangian Mechanics #7 9/18/2020
10 Wed, 9/16/2020|Chap. 3 & 6 [Lagrangian & constraints #8 9/21/2020
11 [Fri, 9/18/2020 |Chap.3 &6 |Constants of the motion
12 [Mon, 9/21/2020 (Chap. 3 & 6 |Hamiltonian equations of motion  |#9 9/23/2020
13 |Wed, 9/23/2020|Chap. 3 & 6 ||Liouville theorm #10 9/25/2020
14 |Fri, 9/25/2020 |Chap.3 & 6 |Canonical transformations
15 Mon, 9/28/2020 |Chap. 4 Small oscillations about equilibrium #11 10/02/2020
16 Wed, 9/30/2020 |Chap. 4 Normal modes of vibration #12 10/05/2020
17 |Fri, 10/02/2020 |Chap. 4 Normal modes of vibration

10/02/2020
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PHY 711 -- Assignment #12

Sept. 30, 2020
Finish reading Chapter 4 in Fetter & Walecka.

==

1. Consider the system of 3 masses (ms=ms=m3=m) shown attached by elastic forces in the right triangular configuration

(with angles 45, 90, 45 deg) shown above with spring constants k and k'. Find the normal modes of small oscillations for
this system. For numerical evaluation, you may assume that k=k".
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Schedule for weekly one-on-one meetings

Nick — 11 AM Monday (ED/ST)
Tim — 9 AM Tuesday

Bamidele — 7 PM Tuesday
Zhi— 9 PM Tuesday

Jeanette — 11 AM Wednesday
Derek — 12 PM Friday



Your questions —

From Tim
1. Do the number of spring constants k, determine the number of normal
modes of a system?
2. What is the meaning of g-space?

From Nick

1. Why can we reduce the infinite problem to 2D? Are we suggesting, since
we're alternating between m and M, that the motion for any two
consecutive sets of m and M is the same?

2. | think the Taylor expansion in 2-D makes sense with that cross term but
what does it look like in 3-D?



Additional digression on matrix properties
Singular value decomposition

It 1s possible to factor any real matrix A
into unitary matrices V and U together

with positive diagonal matrix X

A:UZVH Note that U"U=1=V"V
/Gl 0O - 0)
0 o, - 0
X= . 7 . .

0 0 - o,



Singular value decomposition -- continued
Consider using SVD to solve a singular

linear algebra problem AX =B
A =UzV"

ZV<H|B>

i foro; >¢ z

Details are complicated ....

Your question -- what's all the fuss about singular values? What's their
importance relative to eigenvalues?

Comment — | would like to see a bigger fuss. SVD is different from
eigenvalue analysis and more broadly applicable. At a minimum SVD
analysis identifies mathematically poorly posed problems and offers a “fix”.



Example — linear molecule

—> X

1, 1 5, 1 .
L= 5””13512 +5m2xz2 +§m3x32

1 |
_Ek(xz —X _612)2 _Ek(x3 — X _623)2
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. 0 0 0
Let: x, =>x—x, x,>x,—x, =4, x3>x,—-x, —L,—{,

1, 1 ., 1 ., 1 1
L= 5mlxl2 Jramzxz2 +5m3x32 —Ek(x2 —xl)z _Ek(X3 —xz)z
Coupled equations of motion :
mx, = k(xz _xl)
m,Xx, = —k(x2 — X, )+ k(x3 - X, ) = k(x1 —2x, +x, )
myiy = —k(x, = x, )
Let x.(t) = X7
*=klxs—xr)
m2X“ . k(Xf‘ XY+ XY
lm XY = k(X7 - X7

QNQNQN



For m,=m;, =m,

and m, =m,

>
|k
C()z— —
ma
_
e ) k
a)?’_
m
—_—

2k

_|_
o Mc

T
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Consider an extended system of masses and springs:

Xi-1 X, Xisl

Note : each mass coordinate 1s measured relative

to its equilibrium position x;

L—T—V—lmixz—lki(x — X )2
2 = i 2 — i+1 ]
Note: In fact, we have N masses; x, andx, _,

will be treated using boundary conditions.

10/02/2020 PHY 711 Fall 2020 -- Lecture 17 12



LZT—V:lmZN:xlg_lki(’xiﬂ_xi )2
2 i=1 2 i=0

x,=0 and x,,, =0

From Euler - Lagrange equations :
mx, = k(x2 — 2x1)
mx, = k(x3 —2x, + xl)



From Euler - Lagrange equations :

mx, = k( X

Try : xj (t) — Ae—za)tﬂqa]

—2x, +Xx, ) withx, =0=x, ,

_COZAe—ia)Hiqaj :E(eiqa _2+e—iqa )Ae—ia)Hiqaj
m

—w’ = %(2 cos(qa)—2)

— ﬁsm (qaj

m 2



From Euler - Lagrange equations - - continued :
mx; = k(

]+1—2x +X; ) withx, =0=x,,

o 4
Try: x;(t)=Ade"™" :a)z——ksm (qaj
m 2

o 4k
Note that: x,(¢) = Be™ " — »° =——sin (q j
m

General solution :
X, (1) = 93( Lo iorias | g e—ia)t—iqaj)
Impose boundary conditions :
x, (1) = fR(Ae + Be""”) 0
Xy (£) = ER( Jpiotiqa(N+1) | Be—ia)t—iqa(NH))

0



Impose boundary conditions -- continued:
x,(1) = R(Ae”™ +Be™™ ) =0
Xy, () =R (Ae_iniqa(NH) + Be_m_iqa(NH)) =0
—> B=-4
Xy, ()=NR (Ae_i I (eiqa(NH) _ eV )) =0
= sin(qa(N + 1)) =0
= qa(N+1)=vz where v=12---N

_ \ /(4
N +1

qa



Recap -- solution for integer parameter v

x.(t) =NR| 2ide”" sin( Y j
’ N +1

2 4k ) VT
O =—SIn
Y m [xN+Uj

Note that non - trivial, unique values are
v=12,---N




m | 2.(\N+.1

Examples , — ﬁsin J

'‘Bmasses’
1.2 L Z0masses’ ™
sin(x/2)
1 L .
@, e
4k / m 08 L P - “ @
NI
1
06 | @
o
04 k @
o
02 | &)
o
>
D § § » » § §
0 05 1 15 2 25 3
qa

Note that solution form remains caorrect for N 2«

w(qa)=~4k / m|sin 94
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Your question -- What is the meaning of g-space?

Comment — We have seen that for N masses, there
are N “normal” modes. So if we imagine that N
grows to infinity we should have an infinite number of
modes. The parameter q allows us to “count” the
infinite number of modes in a convenient way.

From previous slide — a)(qa) =4k I m ‘sin(qa)‘
remains consistent as N >«

Your question -- Do the number of spring constants Kk,
determine the number of normal modes of a system?

Comment — While the spring constants certainly affect the
normal modes, the number of modes is typically dN,
where d is the dimension and N is the number of masses.



For extended chain without boundaries:
O

Note that we
T . _ A —iwt+igaj are assumlng
ty: x,()=Ae that all masses
—iqa —iwt+iqaj and springs are
—2+e” )Ae identical here.

xl 1 X
From Euler-Lagrange equations:

mxj:k(xj+1—2xj+xj_1) for all x;

_a)2Ae—ia)t+iqaj — k(eiqa

m

= %(2cos(qa) - 2)

4k
— C() = —sm (qa

m 2
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Consider an infinite system of masses and springs now
with two kinds of masses:

k

JUL

X Nz
Note : each mass coordinate 1s measured relative
to 1t 1libri it 0 .0 ...

o its equilibrium position x; , y, ,

L=T-V

1 &. | = .  [—"  [—"
=5m2 )C?-I-EM E ylz—zkz (le—yi )2—5](2 (yz —
i=0 i=0 i=0 i=0

Because the masses are different, we cannot yet know how
their displacements might be related.
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L=T-V

o0

:%mZx %M%yf —%ki(xiﬂ—% Foskd b -x

i=0
Euler - Lagrange equations :

mx =k(yj_1 —2x, +yj)
Wj :k(xj _2yj +xj+1)

Trial solution : Note that 2qa is an unknown
¥ (t) _ Ae—ia)t+i2qaj parameter.
J

yj (t) _ Be—ia)t+i2qaj

ma” —2k k(e_izq“ +1) [Aj 0
kle® +1) Mo -2k \B)



ma” —2k k(e‘izq" +1) (A) 0
kle> +1) Ma* -2k \B)

Solutions:

, k k 1 1 2cos(2ga)

Note that for m=M,
we obtain the same
normal modes as
before. Is this
reassuring?

a. No

b. Yes




Normal mode frequencies: Note that for
every qa, there

w2 = k n k +k I N I N 2cos(2ga) are 2 modes.
+ — 2 2
m M m M mM
2 2.0
1.8
1.6
15 il
m=M 1.4 m#M
. 1.2-
1.0
0.8
0.5 0.6
0.4
! 05 1 15 0 0.5 1 1.5
- qa ) - Qqa )
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Eigenvectors:

For gqa=0:
\/21{ 2k
w_=0 o, =
m M
A 1 A 1
- N - N
T
For ga=—
“=5
2k 2k
W = — @, =,|—
M m



Potential in 2 and more dimensions

20V
V(X, y) = V(xeq’yeq) +%(X _er) Ox’ Xeg>Veq
o'V -
—I—%(y_yeq )2 o’ _|_(x—xeq)(y_yeq)axay
Xog+Veq

xeq 2 yeq

] 23
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Example — normal modes of a system with the
symmetry of an equilateral triangle

Degrees of freedom for

2-dimensional motion:
2N =6

U,
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Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued

Potential contribution for spring 13:

1
Vs :Ek(wn TU, _“1|_|€13|)2
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Some details for spring 13:

2
(‘613 Tu, _ul‘ _‘613‘)2 = ((613 T U, )1/2 _‘gw‘)

2
20, -u u,
3
13 13 |

1/2
/ 211
( 13+u13) ‘ 13‘[ T ‘513‘2 gmzj Assume ‘1113‘<<‘€13‘

(. -u, T Note that this analysis
of the leading term is
truein1, 2, and 3

dimensions.
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Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued

Potential contribution for spring 13:

1
Vs :Ek(wn TU, _“1|_|€13|)2

10/02/2020 PHY 711 Fall 2020 -- Lecture 17

31



Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued

Potential contributions: V=V, +V,,+V,,

zlk(glz '(uz _ul)}2 +lk(€13 '(u3 _HI)T
2 |€12| 2 ‘613‘

+1k[@3-(u3—uz)f

2 12,5
~lk(u —u )2
~ 2 x2 x1
2
1 (1 J3
+5k(5(ux3 —ux1)+7(uy3 —uyl)]



Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued

5 1 1 1
) -1 o V3 0 V3
y 501 N N

I 4 4 4 4
- _L _L il _L.I'3 L_.*3 0

m 4 4 2 4 4

1 1 3 3
R Y 0 7

1 1 3 3
N T 7

1 1 3 3 3
I I T 772
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Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued

With help from Maple

N
cccm|wm|ww
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What can you say
about the 3 zero
frequency modes?
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3-dimensional periodic lattices
Example — face-centered-cubic unit cell (Al or Ni)

Diagram of Diagram of g-
atom positions space  v(q)




From: PRB 59 3395 (1999); Mishin et. al. v(q)

10 r [q00] X K [qg0] I [qqq] L 10 r [q00] X K [9g0] r [9qq] L
o0 ‘;‘ng:l i i
A1 Q9 | T2 X o, OD%D
B I j i o
(o3
: G L
al
E o ) =2 5 e E
= 1 o) 5 GD =
= a4} : e =
T T,\?\
2 -
ﬂ 1 i 1 l: 1 [ ]
000 025 050 075100 075 050 025 000 0.25 0.5C 0.00 0.25 050 0.75 1.00 075 050 025 000 0.25 0.50
(a) q-> < q q-> (b) q--> <=q q->

FIG. 2. Comparison of phonon-dispersion curves for Al (a) and
Ni (b) predicted by the present EAM potentials, with the experi-
mental values measured by neutron diffraction at 80 K (Al) and 298
K (Ni) (Ref. 33 for Al and Ref. 34 for Ni). The phonon frequencies
at point X were included in the fitting database with low weight.
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Lattice vibrations for 3-dimensional lattice

Example: diamond lattice

Ref. http://phycomp.technion.ac.il/~nika/diamond_structure.html
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Atoms located at the positions :
R“=R," +u
Potential energy function near equilibriu :

S o e »

a,b

-(Rb = RO”)

Define:

so that

U({R})~ U, +— S u' DYy

a,b,j.k

L(f s =3 X, i} Uy~ SsDiud

a,b,j.k



(i =5 Som iy F Uy =3 St
a,j

a,b,j.k

Equations of motion :
ceq ab, b
miij == Dilu;
b,k
Solution form:

1 —iot+iq-R{
u!(t)=——Ale K
ma
Details: Rj;=1“+T where1” denotes

unique sites and

T denotes replicas
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Eigenvalue equations :
a ab
a)zAj = Z W(q)jk A
b,k

In this equation the summation is only over
unique atomic sites.

= Find "dispersion curves" a)(q)



[ A
B. P. Pandy and B. “lOAOTREL
Dayal, J. Phys. C. L,
Solid State Phys. 6 J ¢
2943 (1973) }fj ’
/A
[ jﬁ;
e k
t:i Ia /]/“:
€ f ;' 3
% / LA
= -/ | \-1 | / 1/
|T5 NS | ,5 L/
00 04 0810 !0 02 O 2 04

[£00] — -— [ee 0] eet] —
Reduced wavevector £

Figure 2. Phonon dispersion curves of diamond. Experimental points

et al (1965, 1967). A and O represent the longitudinal and transverse mu
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