PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF online or (occasionally) in
Olin 103

Plan for Lecture 17: Chap. 4 (F&W)

Normal Mode Analysis
1. Short digression on singular value decomposition

2. Normal modes for extended one-dimensional
systems

3. Normal modes for 2 and 3 dimensional systems

10/01/2020 PHY 711 Fall 2020 -- Lecture 17 1

In this lecture, we will extend our normal mode analysis to more complicated systems,
including infinite periodic systems and beyond one dimension.



Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

f|Date |F&W Reading \Topic \Assignment \Due

1 |Wed, 8/26/2020 [Chap. 1 lIntroduction 1 18/31/2020

F Fri, 8/28/2020 |Chap. 1 Scattering theory #2 9/02/2020

F Mon, 8/31/2020 (Chap. 1 Scattering theory #3 9/04/2020

4 |Wed, 9/02/2020 [Chap. 1 [Scattering theory \ \

5 [Fri, 9/04/2020 [Chap. 1 [Scattering theory #4 9/09/2020

F|M0n, 9/07/2020 [Chap. 2 INon-inertial coordinate systems | \

7 |Wed, 9/09/2020[Chap. 3 [Calculus of Variation 45 19/11/2020

8 |[Fri, 9/11/2020 [Chap. 3 [Calculus of Variation 46 19/14/2020

9 |Mon, 9/14/2020 [Chap. 3& 6 |Lagrangian Mechanics 7 19/18/2020

110|Wed, 9/16/2020[Chap. 3& 6 [Lagrangian & constraints a8 19/21/2020

m Fri, 9/18/2020 |Chap.3 &6 ||Constants of the motion

E Mon, 9/21/2020 (Chap. 3 & 6 ||Hamiltonian equations of motion | #9 9/23/2020

113|Wed, 9/23/2020 [Chap. 3& 6 |Liouville theorm #10 19/25/2020

14|Fri, 9/25/2020 [Chap.38&6 |Canonical transformations \ \

115[Mon, 9/28/2020 [Chap. 4 |Small oscillations about equilibrium #11 110/02/2020

16| Wed, 9/30/2020[Chap. 4 INormal modes of vibration #12 110/05/2020
» 17|[Fri, 10/02/2020 [Chap. 4 [Normal modes of vibration \ \
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Updated schedule. This is the last lecture for Chap. 4. On Monday we will continue to
discuss vibrations in extended one dimensional motion as covered in Chap. 7.



PHY 711 -- Assignment #12

Finish reading Chapter 4 in Fetter & Walecka.

this system. For numerical evaluation, you may assume that k=k".
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Sept. 30, 2020

1. Consider the system of 3 masses (ms=mz=m3=m) shown attached by elastic forces in the right triangular configuration
(with angles 45, 90, 45 deg) shown above with spring constants k and k". Find the normal modes of small oscillations for

3

Homework due Monday.




Additional digression on matrix properties
Singular value decomposition

It is possible to factor any real matrix A
into unitary matrices V and U together

with positive diagonal matrix X

A=UxV!
o 0 - 0
g @ 0
0O 0 - o,
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Digression from linear algebra omitted from Wednesday’s lecture.



Singular value decomposition -- continued
Consider using SVD to solve a singular

linear algebra problem AX =B

A =UxV”
_ (v |B)
x= ifo§>g v O,

Details are complicated ....

Your question -- what's all the fuss about singular values? What's their
importance relative to eigenvalues?

Comment — | would like to see a bigger fuss. SVD is different from
eigenvalue analysis and more broadly applicable. At a minimum SVD
analysis identifies mathematically poorly posed problems and offers a “fix”.
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Introducing the concept of SVD without going into detail.



Example — linear molecule

> X

> X

> X3

1, 1 5, 1
L= Emle +5m2x§ +5m3x32

1 1
_Ek(xz X _£12)2 _Ek(x3 —X _623)2
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Back to the discussion of one-dimensional motion of masses and springs.



Let: x, —>x,—X X,>x,—-x —{, x,—>x-x —{,—{,
L= %mle +%m2x22 +%m3x32 —%k(x2 — X, )2 ——k(x3 —x2)2
Coupled equations of motion :
mXx, = k(x2 — xl)
m,x, = —k(x2 — X, )+ k(x3 - X, ) = k(xl —2x, + x3)
myXy = _k(xs - xz)
Let x,(1)=X"e™
—am X/ :k(Xza _Xla)
—?m, XE =k(Xe —2X7 + X7
—@’m X = k(X7 - X7
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More review.
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Reviewing results for example isolated molecule.



Consider an extended system of masses and springs:

O

xi—l X xi+1
Note: each mass coordinate is measured relative

to its equilibrium position x;
1 ul ) 1 N 2
L=T-V= Emzxi _EkZ(le — X )
i=1 i=0

Note: In fact, we have N masses; x, andx,

will be treated using boundary conditions.
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Example of one dimensional system with fixed boundary values.



x,=0 and x,,, =0

From Euler - Lagrange equations :
mi, = k(x, —2x,)
mit, = k(x, —2x, +x,)
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Review of detailed equations.
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From Euler - Lagrange equations :

mx; = k(xj+1 —2x; + xj_l) withx, =0=1x,,,

TI'y . xj (t) — Ae—iwt+iqaj

_a)2Ae—iwt+iqaj zﬁ(eiqa _2+e—iqa )Ae—ia)t+iqaj
m

—w’ = L3 (2cos(ga)-2)

m
, 4k . ,(qa
= @ =—-;In 94
m 2
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Review of solutions discussed on Wednesday.
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From Euler - Lagrange equations - - continued :

mx, = k(x —2x,+ xj_l) with x, =0=x, ,

J J+l

Try: x,(1)=de ™" =0 = ﬁsinz(ﬂ)
' m 2

o 4k .
Note that: x,(t) = Be™" ™ >0 = _ksm{ﬂ)
m 2

General solution :
x,(1) = R(de 0 4 Berioiaa )
Impose boundary conditions :
x,(t) = iR(Ae‘“‘” + Be‘i“”): 0
Xy, (1) = ER(Ae—iniqa(NJrl) +Be—iwt—iqa(N+1)): 0
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Review of boundary conditions.



Impose boundary conditions -- continued:
x,(t) = ER(Ae*"“” + Be*"a”) =0
Xy, ()=R (Aeiia’”iqa(]v”) + Beiw’iqa(N”)) =0
= B=-4
Xy, (=N (Ae‘“‘” (eiqa(NH) — g eV )) =0
= sin(qa(N+ 1)) =0
= ga(N+1)=vzr where v=12---N

_ %4
N+1

qa
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Recap - - solution for integer parameter v

x,(t) =R| 2ide” sin( 5 j
’ N+1

2 4k .2 V7Z'
W =—SIN | ——
Y m (2(]\/ + 1)}

Note that non - trivial, unique values are
v=12,---N
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Review of full solution.
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10/01/2020

4k /' m

Example for N=4: _ |4k vr

Y Nm 2(N+1)

L

N

[\ |

n

i i i
0 0.5 1 1.5 2 2.5 3

qa

Note that solution form remains correct for N 2«

w(qa)=~4k /m sin(qa)‘
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Plot for example.

Now consider the case where N is very large.
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For extended chain without boundaries:

Xio1 ;
From Euler-Lagrange equations:

mx; :k(xj+1—2xj+xj_1) forall x,

TI'y: xj (t) — Ae—iwt+iqaj

—a)er_iniqaj :ﬁ(eiqa _2+e—iqa)Ae—iwt+iqaj
m

-0’ = %(ZCos(qa) -2)

=0 = ﬁsin2 (ﬂj distinct values for 0< ga < 7

m
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Now consider the case where N is infinite so that there are an infinite number of solutions
parameterized by ga as a continuous varable.



1-
0.8
_ 9 06
4k / m

0.4
0.2

% 1 2

qa

Distinct solutions occur for qga in the range of 0-pi as shown in the plot.
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Consider an infinite system of masses and springs now
with two kinds of masses:

. 000 000
A ’\/\ [ /G @\/U&/ /a\ \)\)\/ /m ivk/ /Q\/\/\}\/\/

i i i+1 y i+1 xi+2
Note : each mass coordinate is measured relative

to its equilibrium position x, !, -
L=T-V

:%mixiz +%Miylz _%ki(xm Vi )2 _%ki(yi X )Z
i=0 i=0 i=0 i=0
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Now consider a slight modification of the previous example where masses are alternately
m and M with labels x and y.



L=T-V

= %mixzz +%M§:y3 _%ki(xm — Vi )2 _%ki(yi - X )2
i=0 i=0 i=0 i=0
Euler - Lagrange equations :
mx; = k(yj_l —2x;+ yj)
My, = k(xj —2y, +xj+1)
Trial solution :

xj (t) — Ae—ia)t+i2qaj

yj (t) — Be—ia)t+i2qaj

mao® -2k k@fMW+Q(Aj_O
k(eizq“+1) Ma* -2k \B)
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In this case, we can analyze the system by considering different amplitudes for the m and
M masses. The resulting coupled equations can be written in matrix form.



ma’ -2k ke +1) (A) I
ke +1) Meo® -2k \B)

Solutions :
, k k 1 1 2cosl2ga
0, =—+—tk|—5+—5+ (q)
m M m M mM
) —
154
i
(O]
m+M
0.5
0 T T T T T
1] 02 04 06 0.8 1
“ ga/n
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Plotting the solutions for the frequencies as a function of ga.
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Eigenvectors:

For ga=0:
2k 2k
@ =0 W, =, —+—
m M
A 1 A 1
=N =N
B) 1 B), -1
V4
For =—:
qa 7
2k 2k
0 =.— @, =.—
M m
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Some details about the solutions.
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Potential in 2 and more dimensions

2
20V
~/ l —
V('xﬁy)NV(xeq’yeq)-i_Z(x xeq) a 2
X
Xeq>Veq
20V oV
wH-va) Sal Hr) )23
y Xegq sVeq X y Xeq>Veq
-0.2H
-4+
Vixy) |
~ (0.6
=4
_I_
Iy 5 6
Ii3456_|0 I % 3 4
10/01/2020 PHY 711 Fall 2020 -- Lecture 17 ° 22

Returning to the finite systems, consider equilibria in two dimensions as shown.
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Example — normal modes of a system with the
symmetry of an equilateral triangle

Degrees of freedom for
2-dimensional motion:
2N =6
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Specifically, we will consider 3 masses in an equilateral triangle configuration as shown.
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Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued

Potential contribution for spring 13:

1
Vs =Ek(|€13 T, _“1|_|E13|)2

2
zlk(gw '(“3 _u1)J
2 2 |€13|
2
1 (1 V3
u1 ~ _k(_(u)d _uxl)+_(uy3 _uyl)J

1.
4y :|€13|{EX+_Y
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We need to consider displacements from equilibrium in the x-y plane. Keeping only linear
terms in the displacements we wind up with a simple relationship to analyze.



Example — normal modes of a system with the

symmetry of an equilateral triangle -- continued
Potential contributions: V =V, +V,; +V,,

2 2
zlk(flz'(uz_ul)J +lk(£13'(u3_ul)}
2 1015 2

£,
2
+lk(£23 '(u3 _uz)J
2 1025

2
1 [1 3
B O L)
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Analyzing the 3 displacements for the equilateral triangle geometry, we find these
equations.
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Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued
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S
i P L N S
I N S |1
%ﬁ 0 —%3 i 0 —% uyl
L= IR S S | S
N |

X

X

Y

Y

y
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1

2

x3

2

3

The results is a 6x6 matrix problem to find eigenvalues and eigenvectors.
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Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued

3

3

2

._ |2 K
W = 2

0

0

0
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Results from Maple. We have 6 eigenvalues and 3 non-zero modes for this case.
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3-dimensional periodic lattices
Example — face-centered-cubic unit cell (Al or Ni)

Diagram of Diagram of g-
atom positions space  1(q)
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Interesting extensions to a 3-dimensional crystalline system.



From: PRB 59 3395 (1999); Mishin et. al. v(q)

r [q00] X K [qa0) r [qqal L r [q00] X K [ag0] r lqgal L
10 - 10 -
Al 0, | 1 Ni |
R . ' o 2
8t 5 %@5 N g 1 8 %% oo ] i
e o2 g Ly
v i 2 L H
& 6F L 7 p : o R 1 5 8 L acaeﬁ”&li\ « \L
I ‘c‘:s\o & I 2 “\ Y
£ e % /o E NN
R i o G)),A:ﬁ_ E f( T 2 )\ o
ST i T 7/ S e\ \ K{@f"
e i N ST i v\ S
21 /7 AR Y N |
// ; S/
P A i . ‘ ol i . L .
0.00 0.25 0.50 0.75 1.00 075 050 025 000 025 050 000 0.25 0.50 0.75 1.00 075 050 025 000 025 050
(a) q-> < q q--> (b) q-> <-q q->

FIG. 2. Comparison of phonon-dispersion curves for Al (a) and
Ni (b) predicted by the present EAM potentials, with the experi-
mental values measured by neutron diffraction at 80 K (Al) and 298
K (Ni) (Ref. 33 for Al and Ref. 34 for Ni). The phonon frequencies
at point X were included in the fitting database with low weight.
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Results of normal modes from experiment and simulations for face centered cubic Al (left)
and Ni (right). Interestingly, the phonon frequency patterns are similar for these very
different materials.



Lattice vibrations for 3-dimensional lattice

Example: diamond lattice

e
Z(x+y+z)
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Ref: http://phycomp.technion.ac.il/~nika/diamond_structure.html
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Another example — diamond.
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Atoms located at the positions :
R =R, +u’
Potential energy function near equilibriu :
al) a l a _ al. aZU . b _ b
U({R })~ U({Ro })+ > aZbl(R R, ) R'OR’ o) (R R, )
Define:
w_  OU
%R ‘R, o]
so that
U(R)~U, + L SutDou!
2 ab,j.k
a - da 1 - da 1 a a
L({uj,uj }):EZ’"“(“/ )2 U, _5 Zuij:uf:
a,j ab,j.k
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Some equations for extended systems.
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i) Lm0, Sz
a,j

a,b,j.k

Equations of motion :
cq ab_ b
mi; = —ZDjkuk
b,k
Solution form:
a 1 a _—iwt+iq-R§
uj (t) = F Aj e 0
Details: Ry =1“+T where1* denotes
unique sites and

T denotes replicas
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More euqations.
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Define:

a D‘?:eiq (T - ) i
VV]Ab (‘I) = Z ’ o
T mamb
Eigenvalue equations :

w4 =Y W), 4
b.k

In this equation the summation is only over
unique atomic sites.

= Find "dispersion curves" o(q)
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More equations.
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B. P. Pandy and B.
Dayal, J. Phys. C.
Solid State Phys. 6
2943 (1973)
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Figure 2, Phonon dispersion curves of diamond. Experimental points
et al (1963, 1967). & and O represent the longitudinal and transverse mu
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Results for diamond from simulation and experiment.
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