PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF online or (occasionally)
in Olin 103

Discussion for Lecture 19 — Chap. 7 (F&W)

Solutions of differential equations

1. The wave equation
2. Sturm-Liouville equation

3. Green’s function solution methods
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Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

Date F&W Reading Topic Assignment|Due

Wed, 8/26/2020 |Chap. 1 Introduction #1 8/31/2020
Fri, 8/28/2020 Chap. 1 Scattering theory #2 9/02/2020
Mon, 8/31/2020 |Chap. 1 Scattering theory #3 9/04/2020
Wed, 9/02/2020 |Chap. 1 Scattering theory

Fri, 9/04/2020 |Chap. 1 Scattering theory #4 9/09/2020
Mon, 9/07/2020 |Chap. 2 Non-inertial coordinate systems

Wed, 9/09/2020 |Chap. 3 Calculus of Variation #5 9/11/2020
Fri, 9/11/2020 Chap. 3 Calculus of Variation #6 9/14/2020
Mon, 9/14/2020 |Chap.3 &6 |Lagrangian Mechanics #7 9/18/2020
Wed, 9/16/2020 |Chap.3 & 6 |Lagrangian & constraints #8 9/21/2020
Fri, 9/18/2020 Chap. 3 &6 |Constants of the motion

Mon, 9/21/2020 |Chap. 3 &6 |Hamiltonian equations of motion |#9 9/23/2020
Wed, 9/23/2020 |Chap. 3 & 6 ||Liouville theorm #10 9/25/2020
Fri, 9/25/2020 Chap. 3 &6 |Canonical transformations

Mon, 9/28/2020 |Chap. 4 Small oscillations about equilibrium [#11 10/02/2020
Wed, 9/30/2020 |Chap. 4 Normal modes of vibration #12 10/05/2020
Fri, 10/02/2020 |Chap. 4 Normal modes of vibration

Mon, 10/05/2020 |Chap. 7 Motion of strings #13 10/07/2020
Wed, 10/07/2020|Chap. 7 Sturm-Liouville equations #14 10/09/2020
Fri, 10/09/2020 |Chap. 7 Sturm-Liouville equations
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PHY 711 -- Assighment #14
Oct. 7, 2020

Continue reading Chapter 7 in Fetter & Walecka.

Consider the Sturm-Liouville equation (Eqg. 40.9 in F & W) with 1=1, v(x)=0 and g=1 for the interval 0 < x = 1 and the boundary
values df(0)/dx=df(1)/dx=0.

a. Find the lowest eigenvalue and the corresponding eigenfunction.
b. Choose a reasonable trial function to estimate the lowest eigenvalue and compare the estimate to the exact answer.

Next week, itis likely that we will have a take home exam

instead of homework.
Perhaps distributed Monday 10/12/2020
due Monday 10/19/2020
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Physics Colloquium Thursday, October 8, 2020
Online Colloquium: “Radiation-Dominated Quantum

Fields in the Preinflationary Era of the Universe” —
October 8, 2020 at 4 PM

Taylor Ordines

Graduate Student

Mentor, Dr. Eric Carlson

Physics Department

Wake Forest University, Winston-Salem, NC
Thursday, October 8, 2020 at 4:00 PM

Taylor Ordines recommend the following published paper from his group

for topical information:
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.063528

Two related literature papers may also be of interest:
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.061501
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.065025
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Schedule for weekly one-on-one meetings

Nick — 11 AM Monday (ED/ST)
Tim — 9 AM Tuesday

Zhi— 9 PM Tuesday

Jeanette — 11 AM Wednesday
Derek — 4 PM Wednesday
Bamidele — 7 PM Thursday
Derek — 12 PM Friday?



Your questions

From Tim —

1. What does the extra potential energy density have to do with motion on a
string?When you say an applied force, is that like plucking the string or
somehow putting a force on the string?

From Nick —

1. Can you elaborate on slide 14. | think I’'m missing something on how Cm
minimizes eps”2.

From Gao —

1. In slide 14, is Cn expression from what transformation? Similar to Fourier
transformation? Thank you.



One-dimensional wave equation
representing longitudinal or transverse displacements
as a function of x and t, an example of a partial
differential equation --

For the displacement function, u(x,?), the wave equation has the form:

oO'u 0
—c
ot ox”

Note that for any function f(g) or g(q) :
ux,t) = f(x—ct)+ g(x+ct)

satisfies the wave equation.

=0




The wave equation and related linear PDE’s

One dimensional wave equation for u(x,?):

2 2
af—czaé‘zo Whereczzl
ot Ox o

Generalization for spacially dependent tension and mass density plus

an extra potential energy density:

()2 ‘éﬁf’” 0 (T(x) Op(x, t)j+v(x),u(x,t)=0

Factoring time and spatial variables:

p(x,t) = p(x) cos(wrt +¢)
Sturm-Liouville equation for spatial function:

_ _(fu) ar (X)j +v(x)p(¥) = 0’6 () p(x)




Linear second-order ordinary differential equations
Sturm-Liouville equations

Inhomogenous problem: ——T(x)— +v(x) — /Ia(x) o(x)=F(x)

\\/

given functions

applied
force

When applicable, it is
assumed that the form of
the applied force is known.

solution to be
determined

Homogenous problem: F(x)=0
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Your question -- What does the extra potential energy
density have to do with motion on a string?

Comment — In my opinion, v(x) has nothing to do with
motion on a spring, but F & W are using the one-
dimensional wave equation to motivate a more general
discussion of second order differential equations. In this
lecture, we will briefly review/introduce many related
ideas. These will be also (and perhaps more
systematically) covered in PHY 712.



Examples of Sturm-Liouville eigenvalue equations --

(—ir(x)di +v(x) — /Ia(x)jgo(x) =0

dx X

Bessel functions:

T(x)=—x v(x)=x o(x)= 1 A=v @(x)=J, (x)
X

Legendre functions:
r()=—(1-x*) wx)=0 ox)=1 A=I(+1) ¢ox)=P(x)
Fourier functions:

r(x)=1 v(x)=0 o(x)=1 A=n"7" @(x)=sin(nrx)



Solution methods of Sturm-Liouville equations

(assume all functions and gonstagts are real):
Homogenous problem : T— —7(x)—+v(x)— /Ia(x)j% (x)=0
dx dx
d d
Inhomogenous problem : (— e 7(x) e +v(x)— /Ia(x)j¢(x) = F(x)
X X

Eigenfunctions :
d d
(— d—T(X)— + V(x)]fn (x) = 4,0(x)f,(x)
X dx
Orthogonality of eigenfunctions: j ba(x) f.(x)f (x)dx=0_N ,

where N, = [ o(x)(f,(x)) dx.
Completeness of eigenfunctions:

J(X)Z ﬁa(x])vﬁq(x') _ 5(x—x')

n




Why all of the fuss about eigenvalues and eigenvectors?

d.

b.
C.

They are always necessary for solving differential
equations

Not all eigenfunctions have analytic forms.

It is possible to solve a differential equation without
the use of eigenfunctions.

. Eigenfunctions have some useful properties.



Comment on orthogonality of eigenfunctions

(d . d Ve
T W YL@ = 40001, ()

( d d \ ;
_ — 4 —
wr 7(x) o V(X)/ fn(x)=4,0(x)],(x)

fm(x)(—%f(X)%w(X)jﬂ(X)—ﬂ(X)(—dixT(X)%W(X)jfm(X)
— (4, = 4,0 () £,(x).f, (%)

(fm ()Y ;ff) f @ Z)(CX)

A j=(zn = 3,) o) £,(0) £, ()



Comment on orthogonality of eigenfunctions -- continued

df (X)

L (x)] (4,

__(f (x)z'(x) ﬂvm)a(x),fn ()C)fm(X)

Now consider integrating both sides of the equation in the interval
a<x<bh:

df (X)

@) L (x)]

(f (1)7(x) =(4, = 4,) [ dxo ()£, (x) £, (x)

Vanishes for various boundary conditions
at x=a and x=b
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Comment on orthogonality of eigenfunctions -- continued

df (X) df,, (X)j

dx

= 1, (0)7(x)

[f ()7 (x) = (4, = 4,) [ dxo(x) £, () £,,(x)

a

Possible boundary values for Sturm-Liouville equations:

1. f,.(@)=1,0b)=0
2. 2L
dx

a

3.f.(a)=f,(b) and

df (X)

=0

b

dfm (a) _4d/,,(b)

dx dx

In any of these cases, we can conclude that:

j dxo(x) f.(x) f.(x) =0 for A # 1



Comment on “completeness”

It can be shown that for any reasonable function h(x),
defined within the interval a < x <b, we can expand that
function as a linear combination of the eigenfunctions f (x)

h(x)= > C,f.(x),

where C :N% [ o (em £, ('

These ideas lead to the notion that the set of
eigenfunctions 7 (x) form a "~ "complete"” set in the sense
of ““spanning" the space of all functions in the interval
a < x <b, as summarized by the statement:

o(x)y /» (xj)vﬂ () _ s(x—x).

n




Comment on “completeness” -- continued
h(x)= Y C,f.(x),
1 eb
where €, =—- j o (x")h(x") f. (x")dx".

Consider the squared error of the expansion:

e = j dxa(x)(h(x) -yc, fn(x)]

2 e o
€~ can be minimized:

Oe’ ’

e 0=-2 j dxo—(x)[h(x) _ Zn:cn fn(x)j £ (x)

m

=C = NLmj[dxa(x)h(x) f,(x)




Your question -- Can you elaborate on slide 14. | think
I’'m missing something on how Cm minimizes eps”2. Also
-- In slide 14, is Cn expression from what transformation?
Similar to Fourier transformation?

Comment — This could be similar to a Fourier
transformation if the eigenfunctions f, (x) were sinusoidal
(a particular choice of the Sturm-Liouville form).  About
the minimization of epsilon”*2 — solving for the 0 of the
derivative of the expression is a necessary condition for
flndlng a minimum. Consider the squared error of the expansion:

e = j dxa(x)(h(x) ->c, fn(x)j

e’ can be minimized:

O€*
oC

m

=0=-2| dxa(x)[h(x)—chfn(x)me(x)



Variation approximation to lowest eigenvalue
In general, there are several techniques to determine the
eigenvalues 4, and eigenfunctions f,(x). When it is not
possible to find the “exact" functions, there are several
powerful approximation techniques. For example, the
lowest eigenvalue can be approximated by minimizing the

~S ~/

function ZO ) <%Zv AY ltlv> | S(x) = _%r(x)a+\/(x)
<h o h>

where #(x) is a variable function which satisfies the
correct boundary values. The ""proof" of this inequality is
based on the notion that#(x) can in principle be expanded
in terms of the (unknown) exact eigenfunctions f,(x):

h(x) = ZC f.(x), where the coefficients C, can be

assumed to be real.



Estimation of the lowest eigenvalue — continued:

From the eigenfunction equation, we know that
S()h(x)=85(x)) C,[,(x)= 3. C,2,0(x)f,(x)
It follows that: n n

(S|} = [ h(x)S)h(x)dx =Y (C, P N,A,.
It also follows that:

(h|o|i)= jj}?(x)a(x)ii(x)dx =Y, P N,

(i|s|) ) D IC,IP N,4,

n

liloli) ~ TGN,

n

Therefore




Rayleigh-Ritz method of estimating the lowest eigenvalue

(h|S|h)
Jy< L
(hlolh)
d2
Example: ] f,(x)=Af (x) withf (0)=f (a)=0
X
trial function f_. (x)=x(x—a)
Exact value of 4, = ﬂj = 9'8696? 4404
a a
d2
<X(Cl —X)‘ —dxz‘X(Cl —X)> - 10

Raleigh-Ritz estimate: =
aleigh-Ritz estimate <x(a—x)‘x(a—x)> "



Green’s function solution methods -- note the following slides
were note yet covered.

Suppose that we can find a Green's function defined as follows:

(_if<x>—+v<x> za(x)jG(xﬂ 5(x—x)

dx dx
Completeness of eigenfunctions:

Zf(x)f () s

Recall:

X.X)

I’l

In terms of eigenfunctions:

(_if(x)_-FV(X) )Z,G(x)jG ()C X) (7 )an(xj)vfn(xv)

dx dx

n

=G, ) = R LOLEIN,




Solution to inhomogeneous problem by using Green’s
functions

Inhomogenous problem:

(_im)_w(x) ﬂa(x)jeo(x) F(x)

dx dx
Green's function :

(—ir(x)—ﬂ(x} za(x)jG (x.x') = 5(x—x)

dx dx

Formal solution:

@, (x) = (0/10(\36) T J‘Gg (x,x")VF(x")dx'

Solution to homogeneous problem



Example Sturm-Liouville problem:
Example: 7(x)=1; o(x)=1, v(x)=0; a=0 and b=L
A=1; F(x)=F, sin(%j

Inhomogenous equation :

d’ [ mx
(— P 1j¢(x) =F, sm(fj



Eigenvalue equation :

(— j—jf (1) = A, f,(x)
X

Eigenfunctions Eigenvalues:

. [ nmx _ﬂz
/. (x)= —sm( 7 j ln—(Lj

Completeness of eigenfunctions:

o(x )Zf(x)f(x) 5(x—x')

n

In this example: T Z sin(%j sin( n7sz j =5(x —x")



Green's function :

(— a 7(x) a +v(x) — /la(x)le (x,x') = 5(x — x')
dx dx

Green's function for the example:

' sin(mj sin(nﬂx'
) = S LAY, 29\ L) AL
n no n (MJ _1



Using Green's function to solve inhomogenous equation :

(—%—I)ﬂx) F, sm(?j

7DC'
H(x) = gy (x) + j G(x,x')F, sin (Tjd

=¢o<x>+%z 2
n ﬂ _1
%

Fy [ 7=
=@, (x)+ >——SsIn Lj




Alternate Green's function method :

63 =, (e, x)

(_d_z_ljgm:o = g, (x)=sin(x); g, (x)=sin(Z—x);

W =g,(x) dgc;)fx) —g.(x) dg;)gx) = sin(L — x)cos(x)+sin(x)cos(L — x)

= sin(L)

P(x) =g, (x)+ sm(L x) j sin(x') F, sm( 7 jdx

sm(x)
sin(L) <

$() = gy (x) + —0 sin(ﬁ]

B

_I_

j sin(L —x")F, sm( 7 jdx’




General method of constructing Green'’s functions using
homogeneous solution

Green's function :

(— i 7(x) i +v(x)— /la(x)le (x,x') = 5(x — x')
dx dx

Two homogeneous solutions

.
_if(x)iJrv(x)_,lo-(x)jgi(x):O for i=a,b
\ dx dx

et

1

Gﬂ(xrx') — Wga(x<)gb(x>)



For ¢ —>0:

if:dx(—ir(x)% +v(x) — /Ia(x)j G,(x,x") = I dxé(x — x')

dx

d d) 1
dx| —1(x)— |—g.(x x,)=1
j (dx <>dijga< 8, (x.)

" _ 7(x")

g.(x.)g, (%)jlﬂe W

_r(x)( d

' i "N _ ' i '
W\ dx (ga(x)dxgb(X) gb(X)dxga(X)j

=W = r(x')(ga(x')%gb(x') - gb(x')%ga(x')j

Note -- W (Wronskian) 1s constant, since

aw

=0.
dx'
— Useful Green's function construction in one dimension:

1

Gxi(xﬂx') — Wga(x<)gb(x>)



(_Lm—w(x) za(x)jco(x) F(x)

dx dx

Green's function solution:

0,(1)= 0,0(0) + [ G, (x.xVF (x')dx’

=0 + £ Ig (O '+ £ j g, (x)F (x )’
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