PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF online or (occasionally)
in Olin 103

Plan for Lecture 19 — Chap. 7 (F&W)

Solutions of differential equations

1. The wave equation
2. Sturm-Liouville equation

3. Green’s function solution methods

10/7/2019

PHY 711 Fall 2029 -- Lecture 19

In this lecture, we follow the textbook to use the example of the one-dimensional wave

equation to discuss ordinary differential equations more generally and develop some
solution methods.



Course schedule
(Preliminary schedule -- subject to frequent adjustment.)

| |pate [F&W Reading|[Topic |Assignment|Due
1 |Wed, 8/26/2020 |Chap. 1 Introduction #1 8/31/2020
2 |Fri, 8/28/2020 Chap. 1 Scattering theory #2 9/02/2020
3 [Mon, 8/31/2020 |Chap. 1 Scattering theory #3 9/04/2020
4 (Wed, 9/02/2020 |Chap. 1 Scattering theory
5 |Fri, 9/04/2020 Chap. 1 Scattering theory #4 9/09/2020
6 (Mon, 9/07/2020 |Chap. 2 Non-inertial coordinate systems
7 |Wed, 9/09/2020 |Chap. 3 Calculus of Variation #5 9/11/2020
8 |Fri, 9/11/2020 Chap. 3 Calculus of Variation #6 9/14/2020
|9 |Mon, 9/14/2020 [Chap.3&6 |Lagrangian Mechanics 7 9/18/2020
10|Wed, 9/16/2020 \Chap.3& 6 |Lagrangian & constraints #8 9/21/2020
11 |Fri, 9/18/2020 Chap.3&6 |Constants of the motion
12|Mon, 9/21/2020 |Chap. 3& 6 |Hamiltonian equations of motion  [#9 9/23/2020
13|Wed, 9/23/2020 |Chap.3& 6 |Liouville theorm #10 9/25/2020
14|Fri, 9/25/2020 Chap. 3& 6 |Canonical transformations
15|Mon, 9/28/2020 |Chap. 4 Small oscillations about equilibrium [#11 10/02/2020
16|Wed, 9/30/2020 |Chap. 4 Normal modes of vibration #12 10/05/2020
17 |Fri, 10/02/2020 |Chap. 4 Normal modes of vibration
18|Mon, 10/05/2020 |Chap. 7 Motion of strings #13 10/07/2020

- 19|Wed, 10/07/2020 Chap. 7 Sturm-Liouville equations #14 10/09/2020
[20|Fri, 10/09/2020 [Chap. 7 |Sturm-Liouville equations \ \
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The schedule continues to cover material in Chap. 7



PHY 711 -- Assignment #14

Continue reading Chapter 7 in Fetter & Walecka.

values df(0)/dx=df(1)/dx=0.

a. Find the lowest eigenvalue and the corresponding eigenfunction.

Next week, it is likely that we will have a take home exam

instead of homework.
Perhaps distributed Monday 10/12/2020
due Monday 10/19/2020
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Oct. 7, 2020

Consider the Sturm-Liouville equation (Eq. 40.9 in F & W) with 1=1, v(x)=0 and o=1 for the interval 0 < x < 1 and the boundary

b. Choose a reasonable trial function to estimate the lowest eigenvalue and compare the estimate to the exact answer.

Homework due Friday. Note the mid term take home scheduling.




Physics Colloquium Thursday, October 8, 2020
Online Colloguium: “Radiation-Dominated Quantum
Fields in the Preinflationary Era of the Universe” —
October 8, 2020 at 4 PM

Taylor Ordines

Graduate Student

Mentor, Dr. Eric Carlson

Physics Department

Wake Forest University, Winston-Salem, NC

Thursday, October 8, 2020 at 4:00 PM

Taylor Ordines recommend the following published paper from his group
for topical information:
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.102.063528

Two related literature papers may also be of interest:
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.88.061501
https://journals.aps.org/prd/abstract/10.1103/PhysRevD.95.065025
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Colloquium this will take us out of this world. Taylor Ordines is a senior graduate student
who is reporting on his project under the mentorship of Professor Eric Carlson.



One-dimensional wave equation
representing longitudinal or transverse displacements
as a function of x and t, an example of a partial
differential equation --

62_/1 —c? 82_/1 =0
or’ ox’
Note that for any function f(g) or g(g):
pxy) = f(x—ct)+g(x+ct)
satisfies the wave equation.
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For the displacement function, u(x,), the wave equation has the form:

o

Review of wave equation.




The wave equation and related linear PDE’s

One dimensional wave equation for u(x,2):

2 2
6,21 ca‘u 0 wherec® =—
ot o’ o
Generalization for spacially dependent tension and mass density plus

an extra potential energy density:

632/t(x 1 _ 5( (x )5ﬂ( )j

o(X)——57— +v(0)u(x,1) =0

Factoring time and spatial variables:

u(x,t) = p(x) cos(at + @)
Sturm-Liouville equation for spatial function:

( Lall )jw(x)p(x):w%(x)p(x)

10/7/2019 PHY 711 Fall 2029 -- Lecture 19 6

Generalization of the wave equation. Equations in this class are separable in the time
variables and the spatial variable satisfies a generalized eigenvalue problem of this form.



Linear second-order ordinary differential equations
Sturm-Liouville equations

Inhomogenous problem: ——r(x)— +v(x)— /10'(x) o(x) = F(x)

\\/

given functions applied

force

solution to be
determined

Homogenous problem: F(x)=0
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We will sometimes want to generalize even further with an “inhomogeneous” term such as
an applied force.



Examples of Sturm-Liouville eigenvalue equations --

(—% z‘(x)% +v(x)— ﬂa(x)j(p(x) =0

Bessel functions:

(x)=—x v(x)=x o(x) =% A=v o(x)=J,(x)
Legendre functions:

r()=—(1-%*) v(®)=0 o@)=1 A=II+]) ¢(x)=P~(x)
Fourier functions:

r(x)=1 v(x)=0 o(x)=1 A=r’7" @(x)=sin(nzx)
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For now, we will focus on eigenvalues of the homogeneous equations.



Solution methods of Sturm-Liouville equations
(assume all functions dgonstagts are real):
Homogenous problem : a(— —7(x)—+v(x)— la(x)jgzﬁo (x)=0
dx dx
d d
Inhomogenous problem : (— —7(x)—+v(x)— la(x)jgﬁ(x) =F(x)
dx dx
Eigenfunctions :
d d
(— —r(x)—+ V(X)jfn (x)=4,0(x)f,(x)
dx dx
b
Orthogonality of eigenfunctions: j ox)f (x)f, (x)dx=6N,,

where N, = [ o (x)(f,(x)dx.
Completeness of eigenfunctions:

o(x) L LD 5 (x-)
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The eigenfunctions of these equations have very useful properties such as completeness.



Comment on orthogonality of eigenfunctions

(‘di“x)i + v(x)Jf,,(X) = 4,0(x)1,(x)

Ix dx

(e )| 1.0 = 011,09
dx dx

fm(X)(—%r(x)%+V(X)jfn(x)—ﬂ(ﬂ[—%f(x)%w(x)jfm(x)
— (4~ 2 )o@ £, £, (3)

d df,(x) df, ()
dx(fm<x>r(x> R ACL R

j:( A= 20 £,(6) £, (%)
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Orthogonality of eigenfunctions.

10



Comment on orthogonality of eigenfunctions -- continued

+

Vanishes for various boundary conditions
at x=a and x=b
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——(f @) T f 2y Lot (x)j (4 = 2,) 0 ()£, (31, ()

Now consider integrating both sides of the equation in the interval
a<x<bh:

(f @ L2 - 1 (e L) (x)j ~ (4, - 2,) [ dso(x) £, (x) £, ()

Orthogonality continued.
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Comment on orthogonality of eigenfunctions -- continued

df(X)_f( ) (x )dﬁ,,(x)j

(f (x)z(x)
Possible boundary values for Sturm-Liouville equations:
1. £ (a)=f (b)=0

df, (x
2. 1) LoD g Pul)
dx

a

a

4.0 _

df,,, (a) _df,(0)
dx dx

3.f.(a)= f.(b) and

In any of these cases, we can conclude that:

j dxo(x) f,(x) f, (x) =0 for A # A
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= (4, = 4,) [ dxo(x) £,(6) £,,(x)

Orthogonality continued.

12



Comment on “completeness”
It can be shown that for any reasonable function h(x),
defined within the interval a < x <b, we can expand that
function as a linear combination of the eigenfunctions f,(x)

h(x)~ Y C,f.(x),

where C :Ni” j:’a(x')h(x') £(x)dx.

These ideas lead to the notion that the set of
eigenfunctions f,(x) form a ““'complete" set in the sense
of “'spanning" the space of all functions in the interval
a < x <b, as summarized by the statement:

o) L (x])\ff 0D _ 5 x).

n
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Notion of completeness.
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Comment on “completeness” -- continued
h(x)~ Y C, [ (x),
1 eo
where €, =—— j o (xXYh(x") [, (x")dx".

Consider the squared error of the expansion:

b 2
et = j dxa(x)[h(x) -yc, fn(x)j
¢’ can be minimized:

aag =0=-2 dxa(x)(h(x)—Z%(x)}fm(x)

m

=C = Nijzdxa(x)h(x)fm (%)

m a
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Notion of completeness and practical applications.
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Variation approximation to lowest eigenvalue
In general, there are several techniques to determine the
eigenvalues 4, and eigenfunctions f,(x). When it is not
possible to find the ““exact" functions, there are several
powerful approximation techniques. For example, the
lowest eigenvalue can be approximated by minimizing the
function <h‘S‘h> S(x) = —ir(x)i—l—v(x)
ﬂo <=, dx dx
<h o] h>

where #(x) is a variable function which satisfies the
correct boundary values.  The ““proof" of this inequality is
based on the notion that #(x) can in principle be expanded
in terms of the (unknown) exact eigenfunctions f,(x):
h(x)= ZCn f.(x), where the coefficients C, can be

assumed to be real.

A very useful property of eigenfunctions related to homework problem



Estimation of the lowest eigenvalue — continued:

From the eigenfunction equation, we know that
S(X)h(x)=S(x)Y.C,f,(x) = 2 C,2,0(x) f,(x).
It follows that: n n

(|S|i) = [ A)S@h(x)dx = YIC, P N, 4,
It also follows that:

(hlo|i) = [ hAxoh(xd =Y [C,F N,

n

(7ls|) _ZICn ’ N4,

(hloli) SCEN, =
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Therefore

Proof of theorem continued.
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Rayleigh-Ritz method of estimating the lowest eigenvalue

(h|S|7)
ﬁo Sﬁ,
(hlo]h)

Example: —j—; £()=Af.(x) withf,(0)=f.(a)=0

trial function f, (x)=x(x—a)

7°  9.869604404

Exact value of 4, = —= =
a a

dZ
x(a—x) iy x(a—x)
Raleigh-Ritz estimate: < | dx® | > = 10

(x(a=x)x(a-x)) &
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Example of the Rayleigh Ritz method.



Green’s function solution methods
Suppose that we can find a Green's function defined as follows:

(—%T(x)% +v(x)— /Ia(x)] G,(x,x")= 5(x — x')
Completeness of eigenfunctions:

o (x) LD ()

n

Recall:

In terms of eigenfunctions:

(—%T(X)% +v(x) - ﬂa(x)jGi (x,x") = G(X)Zn: fn(x])\{n )

n

=G, (x,x") = Zﬁa(x)f(_x;/Nn
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The following slides present solution methods for differential equations involving the use of
eigenvalues.



Solution to inhomogeneous problem by using Green’s
functions

Inhomogenous problem:
[—irmi v(x) - za(x)jco(x) = F(x)
dx dx
Green's function :
d d
— = 7(x)— +v(x) - Ao(x) |G, (x,x") = S(x — x)
dx dx
Formal solution:

P =)+ [ G, Cex)F ()

Solution to homogeneous problem
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From a knowledge of the Green’s function we can find solutions of related inhomogeneous

equations.

19



Example Sturm-Liouville problem:

Example: 7(x)=1 o)=L v(x)=0; a=0 and b=1L

A=1; F(x)=F, sin(%)

Inhomogenous equation :

(— 572 - ljgé(x) =F, sin(%}
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Example.
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Eigenvalue equation:

(— %]fn(x) A1)
X

Eigenfunctions Eigenvalues :

f,(x)= %sm(%j 2, = (%)

Completeness of eigenfunctions :

G(X)Zw = 5(x—x")

n

'

In this example: %Z sin(%) sin(%) =5(x —x')
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Solution using eigenfunctions.

21



Green's function :
d d
——7(x)—+v(x)—Ao(x) |G, (x,x") = 5(x — x’)
dx dx

Green's function for the example:

n ﬂ‘n_ﬂ‘ L n (nﬂ'jz 1
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(nmox) . ( nax'
e L@LE)/N, 2 Sm( L )Sm( Lj
Gxx)=), ==

22

Continued.
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[— j—z - 1j¢(x) = F, sin(%)

7tX
#(x) = ¢, (x) + j G(x,x')F, sin [T)d

nm
sm(L ¢ (nm !
=¢,(x)+ —Z 5 I sin( }FO sm[—jdx’
L (nz 40 L
L
=g, (x)+ sin(EJ
P L
—| -1
L
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Using Green's function to solve inhomogenous equation :

23

In this case, the solution simplifies.
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Alternate Green's function method :

G(x,x') = % g.(x.)g,(x.)

P(x) =g, (x)+ sm( x)j51n(x )F, sm( jdx
| Sin (X)

sm(

j sin(L —x")F, sm( jdx

#(x) = (x) + lsin(%}

T
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[_j_z_ngi(x)zo = gu(x)=sin(x); g,,(x)zsin(L—x);
w=g, (x)-dgc; (x) - &, (x)dgdb_(x) = sin(L — x)cos(x)+ sin(x)COS(L - x)
X x
= sin(L)

Another method of finding a Green’s function.

24



General method of constructing Green’s functions using
homogeneous solution

Green's function :

(—if(X)i +v(x)— ﬂ’a(x)jG/l (x,x') = 5(x —x')
dx dx

Two homogeneous solutions
d d :
——7(x)—+v(x)-Ao(x) |g,(x)=0 for i=
dx dx
Let

G, (x,x) = %ga ()2, (x.)
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a,b

25

Green'’s function based on homogeneous solutions (not eigenfuntions).

25



For ¢ —0:

X'+e X'+e

I dxﬁ—%r(x)%+v(x)—xlcf(x)le(x,x')= j dxS(x—x")

x'—e x'—e

d d)1
| dx[—ar(ma]wga(a)gb(a)—1

_7(x)

(x) ( d
w

' i n_ v i '
o (ga(X)dxgb(x) gh(X)dxga(x )j

gu (x< )gb (x>)j:|

x'—€

W= r(x')(ga(x')%gm') —gb(x%ga(x'ﬂ

Note -- W (Wronskian) is constant, since o =0.
X

— Useful Green's function construction in one dimension:

G, (x,x") = %ga (x.)g,(x.)
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Some details.
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(_ir(x)i +v(x) — ﬂG(X)j(P(X) = F(x)
dx dx

Green's function solution:

?,(x) =@,(x) + j G, (x,x"\F(x")dx'

X

=)+ £20 jg e S P
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More details. To be continued.
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