PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF online or (occasionally)
in Olin 103

Plan for Lecture 20 — Chap. 7 (F&W)

Solutions of differential equations

1. Green’s function solution methods based on
eigenfunction expansions

2. Green’s function solution methods based on
solutions of the homogeneous equations
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In this lecture, we will continue our discussion of one dimensional ordinary differential
equations.
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The schedule continues to cover material in Chap. 7




Plan for next week. Take home exam will be available on
Monday 10/12/2020 and due Monday 10/19/2020. ltis an
open book/open note exam. According to the honor code,
it must be your own work. You may consult with me, but NO
ONE ELSE. The problems are likely to be similar to those
you have had for homework. The synchronous lectures
will continue through this period, but no additional
homework will be assigned.
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Comment on take home exam for next week.



Review — Sturm-Liouville equations defined over a range of x.
d d
Homogenous problem : [— —7(x)—+v(x)— /Ia(x)jgzﬁo (x)=0
dx dx

Inhomogenous problem: (— 4 7(x) 4 +v(x)— la(x)j¢(x) =F(x)
dx dx
Eigenfunctions :

[~ o | =20 0
X dx

Note that, because Sturm-Liouville operator is Hermitian,
the eigenvalues are real and the eigenfunctions are
orthogonal. In the last lecture, we argued that the
eigenfunctions form a “complete” set over the range of x
defined for the particular system.
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Review of the class problems considered.



Eigenvalues and eigenfunctions of Sturm-Liouville equations
In the domain a<x<bh:

d d
(——T(X)— + V(X))fn (x) = 4,0(x) f,(x)
dx dx
Alternative boundary conditions; 1. f (a)=f, (b)=0

=0
df, (@) _ df,(b)
dx dx

or 2. r(x)% () dfg)(cx)

a

or3. f (a)=f, (b) and

Properties:

Eigenvalues A are real

Eigenfunctions are orthogonal: Jba(x) f,(x)f, (x)dx=06, N,

where N, = [ o(x)(f,(x))*dx.
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General properties.



Variation approximation to lowest eigenvalue
In general, there are several techniques to determine the
eigenvalues 4, and eigenfunctions £ (x). When it is not
possible to find the ““exact" functions, there are several
powerful approximation techniques. For example, the
lowest eigenvalue can be approximated by minimizing the
function <h‘S‘h> S(x) = —ir(x)i—l—v(x)
ﬂo <=, dx dx
<h o] h>

where #(x) is a variable function which satisfies the
correct boundary values.  The ““proof" of this inequality is
based on the notion that #(x) can in principle be expanded
in terms of the (unknown) exact eigenfunctions f,(x):
h(x)= ZCn f.(x), where the coefficients C, can be

assumed to be real.

Comment on the Raleigh-Ritz approximation for the lowest eigenvalues.



Estimation of the lowest eigenvalue — continued:

From the eigenfunction equation, we know that

S(X)h(x)=S(x)Y.C,f,(x) = 2 C,2,0(x) f,(x).

It follows that:

(h|S|i)= jb H)Sh(x)dx =Y IC, | N,A,.

It also follows that:
(hlolh)=| "o hxdc=3C, [ N,

(is) ZnZICn N4,

(iloli) SN,
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Therefore

Proof of the Rayleigh-Ritz theorem.



Rayleigh-Ritz method of estimating the lowest eigenvalue

(h|S|7)
ﬁo Sﬁ,
(hlo]h)

Example: —j—; £()=Af.(x) withf,(0)=f.(a)=0

trial function f, (x)=x(x—a)

7°  9.869604404

Exact value of 4, = —= =
a a

dZ
x(a—x) iy x(a—x)
Raleigh-Ritz estimate: < | dx® | > = 10

(x(a=x)x(a-x)) &
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Review of example from last lecture.



Rayleigh-Ritz method of estimating the lowest eigenvalue

(|s|h)
ﬂ’o <=,
(o)
d’f,(x .
Example: - % +GXf(x)=A,f,(x)  withf, (-0)= f,(0)=0
X
trial function f. (x)= e
18| 7.
Raleigh-Ritz estimate: M =g+ G =0 (Q)
14 <fma1 o |fma1> 4g
ﬂ“trial (g) -
— = 12
VG
11
1.0+ ; ‘ : ! ; | | |
03 0.4 0.5 0.6 0.7 0.8 0.9 1.0
g/ VG Note that for differential equation of the
1 Schoedinger equation of the harmonic oscillator
goz_\'G ﬂ'm‘al(go): VG _ mo 2m ho
2 G__ trialz_zEU :>E0:_
h 2
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Another example.



Recap -- Rayleigh-Ritz method of estimating the lowest eigenvalue

Example from Schroedinger equation for one-dimensional harmonic oscillator:

LR L 0= E ) withf, (0= £,6) =0
2m  dx 2

Trial function f, ., (x)= e

1Sl £ 2 2.2 22
Raleigh-Ritz estimate: M = L + mo” [ =E_,(2)
< trial O-|f;n'a1> 2m 4g
g, = mTa’ E..(g,)= %ha) @ Exact answer
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In this case, the minimization process yield’s the exact answer.

10



Solution to inhomogeneous problem by using Green’s
functions

Inhomogenous problem:
[—irmi v(x) - za(x)jco(x) = F(x)
dx dx
Green's function :
d d
— = 7(x)— +v(x) - Ao(x) |G, (x,x") = S(x — x)
dx dx
Formal solution:

P =)+ [ G, (r.x)F ()

Solution to homogeneous problem
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From a knowledge of the Green’s function we can find solutions of related inhomogeneous

equations.
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In this lecture, we will discuss several methods of
finding this Green'’s function. This topic will also
appear in PHY 712
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Suppose that we can find a Green's function defined as follows:
d d
——1(x)—+v(x)—Ao(x) |G, (x,x)=0(x—x'
(a’x()dx (x) ()jz( )=5( )
Completeness of eigenfunctions:

o (x) L LD 5(x- )

n

Recall:

In terms of eigenfunctions:
_d L _ N — S, (0.1, ()
( T () la(x)le (x,x") G(x)zn: v

=G, (x,x)=) /s (x)f(_x}? /N,

10/9/2019 PHY 711 Fall 2029 -- Lecture 20 13

The following slides present solution methods for differential equations involving the use of
eigenvalues.



Example Sturm-Liouville problem:

Example: 7(x)=1 o)=L v(x)=0; a=0 and b=1L

A=1; F(x)=F, sin(%)

Inhomogenous equation :

(— 572 - ljgé(x) =F, sin(%}
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Example.
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Eigenvalue equation:

(— %]fn(x) A1)
X

Completeness of eigenfunctions :

G(X)zw =5(x—x")

In this example: % Z sin(%) sin(
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Eigenfunctions Eigenvalues :

f,(x)= %sm(%j 2, = (%)

'

ij ~5(x—x)

Solution using eigenfunctions appropriate for this example.
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Green's function :
d d
——7(x)—+v(x)—Ao(x) |G, (x,x") = 5(x — x’)
dx dx

Green's function for the example:

n ﬂ‘n_ﬂ‘ L n (nﬂ'jz 1
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(nmox) . ( nax'
e L@LE)/N, 2 Sm( L )Sm( Lj
Gxx)=), ==

Continued.
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Using Green's function to solve inhomogenous equation:
d 2

: zx'")
P(x) = g, (x) + j G(x,x")F, sm( - j

= (00(X)+ n ( sz lgsm(’mx jFOsin(ﬂijdx'
=@, (x)+ [ jg [%)
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2
(—d— — IJ @o(x) = F,sin [%j with boundary values @(0)=¢(L)=0

In this case, the solution simplifies.
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Alternate Green's function method not based on eigenvalues

but on solutions to the homogeneous problem:

G(x,x')z%ga()&)gb(&) for 0<x<L

[_j_z_ngi(x):O =&, (X)=Sin(x); g, (X)=Sin(L—x);

W=l g ()8 i (1) cos(x) s (x)os (L —x)

=sin(L)

3 Sin(L=X) 7. (X
o(x) = @,(x) + —sin( J.sm(x F, s1n( 7 jdx

sm(x) J. in(L —x")F,sin| — |dx'
sm(L)
@(x) =¢0(X)+Lsm(7zxj Hurray! Same as
(”j -1 before.
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Another method of finding a Green’s function.
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More details on the general method of constructing Green’s
functions using homogeneous solution

Green's function :

(—if(X)i +v(x)— ﬂ’a(x)jG/l (x,x') = 5(x —x')
dx dx

Two homogeneous solutions
(—ir(x)i +v(x)— la(x)]gi(x) =0 for i=a,b
dx dx
Let
L
G, (x,x") = 7 % (X8 (x.)
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Green'’s function based on homogeneous solutions (not eigenfuntions).
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For ¢ —0:

X'+e X'+e

I dxﬁ—%r(x)%+v(x)—xlcf(x)le(x,x')= j dxS(x—x")

x'—e x'—e

d d)1
| dx[—ar(ma]wga(a)gb(a)—1

_7(x)

(x) ( d
w

' i n_ v i '
o (ga(X)dxgb(x) gh(X)dxga(x )j

gu (x< )gb (x>)j:|

x'—€

W= r(x')(ga(x')%gm') —gb(x%ga(x'ﬂ

Note -- W (Wronskian) is constant, since o =0.
X

— Useful Green's function construction in one dimension:

G, (x,x") = %ga (x.)g,(x.)
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Some details.

20



(_ir(x)i +v(x) — ﬂG(X)j(P(X) = F(x)
dx dx

Green's function solution:

?; (x)= (010()6) +J.G1 (x,x")F(x"dx'

0,00+ B0 [, (O £l [ (P

Note that the integral has to be performed in two parts; the
method only works for one dimension.
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More details.
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Example --

d2

FCD(x) =—-p(x) /¢, electrostatic potential for charge density p(x)
X

Homogeneous equation:
dZ
—2 8 (x)=0

Letg,(0=x  g(x=1

Wronskian:
de, (x de (x
W =g, 8D g (B
dx dx
Green's function:
G(x,x")=—x_

D(x) = D, () +— [ dx'x pat) += [ dx' (')
E0 —0 60 X
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Another example, this time taken from electrostatics.

22



Example -- continued
2

?d)(x) =—p(x) /€, electrostatic potential for charge density p(x)

D(x) =D, (x) +i jﬁ dx'x' p(x") +£de'p(x’)
€ “» € %

0 x<-a
Suppose  p(x)=<px/a —-a<x<a
0 xX>a
0 x<—a

3 2 3
DO(x) =Dy (x)+ &[a_ﬁ_&_x_} —a<x<a
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Solutions for a particular charge distribution.



0 x<-a
3 2 3
d(x) = Po)d XX i<x<a
cal\ 3 2 6
2
— p,a xza
3¢,
2_
-2 1 0 1
_1_
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Plot of the change distribution and of the electrostatic potential.



