PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF online or (occasionally) in
Olin 103
Plan for Lecture 25 — Chap. 8 (F & W)

Motions of elastic membranes
1. Review of standing waves on a string
2. Standing waves on a two dimensional membrane.

3. Boundary value problems
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In this lecture, we will resume our consideration of elastic media, extending the one
dimensional analysis of a string to a two dimensional membrane.



10|wed, 9/16/2020 Chap. 3 &6 |Lagrangian & constraints #8 9/21/2020
11 |Fri, 9/18/2020 Chap. 3 &6 |Constants of the motion

[12|Mon, 9/21/2020 |[Chap. 386 |[Hamiltonian equations of motion 19 10/23/2020
[13|Wed, 9/23/2020 [Chap. 386 |Liouville theorm #10 10/25/2020
14 Fri, 9/25/2020 Chap. 3 &6 |Canonical transformations

15| Mon, 9/28/2020 |(Chap. 4 Small oscillations about equilibrium #11 10/02/2020
[16|Wed, 8/30/2020 [Chap. [Normal modes of vibration 12 [10/05/2020
[17][Fri, 10/02/2020 [Chap. [Normal modes of vibration \ \

18] Mon, 10/05/2020 |Chap. Motion of strings #13 10/07/2020
19| Wed, 10/07/2020 |Chap. Sturm-Liouville equations #14 10/09/2020

[20[Fri, 10/09/2020 |[Chap.
[21]Mon, 10/12/2020 [Chap.
[22|Wed, 10/14/2020[Chap.
[23[Fri, 10/16/2020 [Chap.

Sturm-Liouville equations

\Fourier transforms and Laplace transforms
Complex variables and contour integration
Rigid body motion

=y

||| NN N NN

[24]Mon, 10/19/2020 [Chap. Rigid body motion #15 10/21/2020
» [25|Wed, 10/21/2020 [Chap. |[Elastic two-dimensional membranes #16 10/23/2020
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The homework assignment relate to rigid body motion.
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“Intrinsically Unfolded Alpha-C Connector of
Fibrinogen is a Major Contributor to the
Mechanical Strength of Fibrin Fibers”

Fibrinogen is the key mechanical protein in blood coagulation since it is the building block of fibrin
fibers, and these 100 nm thick fibers provide mechanical and structural stability to blood clots as they
stem the flow of blood. In hemostasis, blood clots stop blood flow in the event of injury to blood vessels,
and they are involved in the initiation of wound healing. In this case, they are beneficial — in fact,
lifesaving — for the individual. On the other hand, in thrombosis, the aberrant formation of blood clots
inside blood vessels causes serious diseases. For example, blood clots are the underlying pathology of
myocardial infarction, ischemic strokes, deep vein thrombosis, and pulmonary embolism. In both

scenarios, hemostasis and thrombosis, clots mechanically stop the flow of blood. The major structural
Turz11202v FHY 711 Fail ZUZU -- Leciure 25 3
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Thursday’s lecture is by a senior biophysics graduate student. Please consult the webpage
for details including relevant references on the topic.



Elastic media in two or more dimensions --

Review of wave equation in one-dimension — here y(x,t) can
describe either a longitudinal or transverse wave.

Traveling wave solutions --

O u L, 0u

— - —=
ot? ox®

Note that for any function f{g) or g(g):
ue 0= f(x—ct)+g(x+ct)

satisfies the wave equation.
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Review of the wave equation in one special dimension.



Initial value problem: u(x,0)=¢(x) and %(x,o )=w(x)
then:  4(x0)=¢(x)=f(x)+g(x)

K 0) = (x) = — VI _ 429
= (0= ()= c( o dx]

= f()-g() == [y (x)ax

For each x, find f(x)and g(x):

0= %EM —%fw(x')dx')

g0 - %[m) + %iw(x')dx'j

= u(x,t)= %(¢(x —ct) +¢(x+cz))+2ic j w(x")dx'
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Review continued.



1

Example with w(x) =0 and ¢(x) =—
x +04

1=0.050251
25

-4 -2 0 2 4

Example with ¢/(x) =0 and ¢(x) = e
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Two examples of traveling waves.



2 2
8_,;1 - 8_,21 =0
ot ox
with (0,1)= u(L.t) = 0.
Assume:  u(x,t)= iR(e“‘” p(x))

2
where ddp ) +k*p(x)=0

X2
. ViIxX
x)= Asin| —
p,(x) ( 7 )
kV:"T” o =ck,
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Standing wave solutions of wave equation:

SIS

Standing wave solutions for constrained string.




Fundamental, or first harmonic Second harmonic Third harmonic
v — W v
A
N N N A N A N N A N A N A N
h fa fs
n=1 L=1x, n=2 L=k, n=3 I:SM
a (b
1= 1.8090
1
05
02 04 0.6 0.8 1
x
-05
-1
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Some more details of standing waves.



Wave motion on a two-dimensional surface — elastic

membrane (transverse wave; linear regime).
Two-dimensional wave equation:

T
—5 = cVu=0 where ¢* = —
ot o
Standing wave solutions:

u(x, y,0) =R(e ™ p(x,))

w
(V2 +k2)p(x,y) =0 where k =—
C
p(x, )
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Now consider, the same idea, generalized to two spatial dimensions. Here we will focus on
standing wave solutions.



666

ou Ou Ou
L=|2 ,t dxd
I(aaaxyjdxy

Hamilton's principle :

Lagrangian density : 1{ Qu ou au, X,y ,tj

5]2.Ldt=O

oL o0 oL o oL o oL

ou ot o(ouldr) ox o(ouldx) oy o(ouldy)
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It is possible to formulate the treatment using a continuous Lagrangian.
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Lagrangian density for elastic membrane with constant o and 7 :

2
L u,a—u,a—u,a—u;x,y,t =ld(a—uj —lT(W)2
Ox Oy ot 2 \ot 2

oL o0 oL o oL o oL

ou ot o(oulot) ox o(ouldx) oy oouloy)

o’u T

——c'Vu=0 where ¢® = —

ot o
Two-dimensional wave equation:
o’u T
—5 - cVu=0 where ¢ = —
ot o

Standing wave solutions:

u(x, y,0) =R(e " p(x,))

(V2 +k2),0(x,y):O Wherek:ﬁ
c
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Some details.
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Consider a rectangular boundary:

a

Clamped boundary conditions :

p0,y) = p(a,y)= p(x,0) = p(x,b) =0

w
= p(x,y)=4 sin(@j sin(?j where k = —
a

2 2
a b
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(V2 +k2)p(x,y) =0

c

An example of the rectangular membrane clamped on all edges.
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1 og 06 04 T4z 04 06 08

2 2 . 2
» (27 T 3 27 2z
k21 = — +| — k22 =| — + | —
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Some two dimensional standing waves.
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More general boundary conditions:
Vul, = k1,

v u‘b =0 represents "free" side

Mixed boundary conditions :

p(x.0) = p(x.b) = op(0,y) _9p(a.y) _,,

represents bounded side constrained with spring

Ox

Ox

2 mim
kmn =
( a

10/21/2020

= P, (X, 1) = Acos(mﬂxjsin(nﬂyj
a

b

(5
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Other possible boundary conditions.
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Consider a circular boundary:

Clamped boundary conditions for p(7, @) :
P(R,p)=0

(V2+k2)p(’”a¢)20 where k=2

C

In cylindrical coordinate system
010,17
or* ror r’og’
Assume:  p(r,p) = f(r)D(¢)
Let: D(p)=e"?
Note : O(p)=D(p+27)
= m = integer

VZ
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Another example of a membrane, this time clamped at the boundary of a circle.
in a drum for example.) It is convenient to polar coordinates.

(Such as
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Consider circular boundary -- continued
Differential equation for radial function:
d> 1d m
_2 +
dr” rdr
= Bessel equation of integer order with transcendential solutions
Cylindrical Bessel function J, (z)
,(z)alsocalled Y (z)

ta
-
=N
w
=
=
o
=
ta
=
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The radial equation has this special form which is conveniently expressed in terms of
Bessel functions.



Some properties of Bessel functions

. ; 2j
Asending series: J, (z) = ( j Z [ j
] ]+m

J=

Recursion relations: J, ,(z)+J,,,(z) = —J .(2)

S (2)=J,4(2) = sz (2)

z>>1

Zeros of Bessel functions J, (z,,)=0
m=0: z, =2.406, 5.520, 8.654,...
m=1: z,6=3.832, 7.016, 10.173,...
m=2: z, =5.136, 8.417, 11.620,...

10/21/2020 PHY 711 Fall 2020 -- Lecture 25

Asymptotic form: J, (z)——> 2 cos(z - —)
z 2 4

Some properties of Bessel functions of integer order.
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http://dImf.nist.gov/

NIST Digital Library of Mathematical Functions

Project News
2014-08-29 DLMF Update; Version 1.0.9

2014-04-25 DLMF Update; Version 1.0.8; errata & mmproved MathML

2014-03-21 DLMF Update; Version 1.0.7; New Features improve Math & 3D Graphics

2013-08-16 Bille C. Carlson, DLMF Author, dies at age 89
More news

Foreword

Preface

Mathematical Introduction

Algebraic and Analytic Methods

Asymptotic Approximations

Numerical Methods

Elementary Functions

Gamma Function

Exponential, Logarithmic, Sine, and Cosine Integrals
Error Functions, Dawson’s and Fresnel Integrals
Incomplete Gamma and Related Functions

Airy and Related Functions

19
20
21
22
23
24
25
26
27
28
29
30

Elliptic Integrals

Theta Functions

Multidimensional Theta Functions
Jacobian Elliptic Functions
Weierstrass Elliptic and Modular Functions
Bernoulli and Euler Palynomials

Zeta and Related Functions
Combinatorial Analysis

Functions of Number Theory

Mathieu Functions and Hill's Equation
Lamé Functions

Spheroidal Wave Functions

10 Bessel Functions 31 Heun Functions

11 Struve and Related Functions 32 Painlevé Transcendents

12 Parabolic Cylinder Functions 33 Coulomb Functions
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A resource for finding properties of special functions including Bessel functions.

18



Series expansions of Bessel and Neumann functions

o zz)k
I(z) = kZ kT [v rk+1)

1A n-1 - |
Y?L[ZJ =" (2 3 Z_: (ke 1] (4 z ) 111( )]?:[ZJ
G g i)
. Z:: ( Wk +1) +P(n+k+ 1])k'[n+kj'
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Some details.
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Some properties of Bessel functions -- continued

Note: Itis possible to prove the following

identity for the functions J m(zl”;" rj :

T z, z R’ >
_[ Jm - r Jm - r rdr =4 ("]m+l (Zmn )) é‘nn'
U R R 2

Returning to differential equation for radial function :

d> 1d m
e =0
= fmn(r):AJm( mn rj, - = Zm
R
10/21/2020 PHY 711 Fall 2020 -- Lecture 25 20

Patient mathematicians worked out lots of useful relationships. We are particularly
interested in aligning the zeros of the Bessel functions with the boundaries of our
membrane.



,001(7’,¢))=f01(r)=AJ0(%rj poz(’”a(”):foz(”)zAJo(%r\]
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Some examples.
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Pu(r.@) = f,,(1)cos(p) P, @) = fiy(r)cos(p)
= AJI(% rj cos(p) = /Ul(%’”j cos(p)
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More examples.



Ernst Chladni

Ernst Chladni

Born 30 November 1756
Wittenberg, Electorate of Saxony
in the Holy Roman Empire

Died 3 April 1827 (aged 70)
Breslau, Province of Silesia in the
Kingdom of Prussia, a part of the
German Confederation

Nationality German

Known for Study of acoustics
Chladni plates and figures
Estimating the speed of sound
Chladni's law
Theory of meteorites' origins

Scientific career

Fields Physics

10/21/2020

PHY 711 Fall 2020 -- Lecture 25
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A very nice demonstration of these standing waves was invented by Chladni
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Demonstration with motor in the middle — (PASCO)
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A picture of the demo we have in Olin.
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http://www.physics.wfu.edu/resources/education-resources/demo-videos/waves/
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Movie thanks to Eric Chapman.

25



More complicated geometry — annular membrane

In cylindrical coordinate system
o> 10 1 ¢
St oot
or- ror r-op
Assume:  p(r,@) = f(r)P(p)
Let: D(p)=e"’
Note: O(p)=D(p+2r)
= m = integer

V2
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A non-trivial example with two boundaries.
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Consider circular boundary -- continued

Differential equation for radial function :

d> 1d m
— etk |f(r)=0
(a’r2 rdr 1’ Jf( )
= Bessel equation of integer order with transcendential solutions
Cylindrical Bessel function J, (z)

Cylindrical Neumann functio

10/21/2020 PHY 711 Fall 2020 -- Lecture 25 27

In this case, both Bessel and Neumann functions are needed.
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Normal modes of an annular membrane -- continued

Differential equation for radial function:

(dz +li—m—2+kzjf(r)=0

ar* rdr r*

General form of radial function: f(r)=A4J, (kr)+ BN, (kr)
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We need to find the linear coefficients A and B and the wavevector k.
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Normal modes of an annular membrane -- continued

Boundary conditions:

f(a@)=0 f()=0

AJ (ka)+ BN (ka)=0
AJ_(kb)+ BN (kb)=0

= 2 equations and 2 unknowns -- £ and =

B = —J, (ka) = —J, (kb) (transcendental equation for k)
A N, (ka) N, (kb)
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A method of solving this problem.
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Normal modes of an annular membrane -- continued

Boundary conditions:

f@)=0 f()=0

B —J,(ka) —J,(kb)
A N (ka) N, (kb)

-- in terms of solution &, :

1) = A(J,,, (k) — %N (k,,mr)]
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Analysis for m=0 and a=0.1, b=0.2:

-Bessell (0, 0.2-%)

S p!ot({ -Bessell (0, 0.1-k)

BesselY (0, 0.1-k) ° BesselY (0, 0.2-k)

, k=25 .33, color=[red, b!ue]);

Ny /
/
4—'/—_/_'_’_,_‘
0
2// 2® 20 3p 3t
-05
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Finding a solution graphically.
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> fsolve(

-Bessell (0, 0.1-%)

_ —Bessell(0,0.2-k)

BesselY(0, 0.1-k)

30..33 |;
BesselY(0,02°k) ° k )

31.23030920

/

05
/
4—'—,/__.
0 T
2/. 28 ;) p at 3 &0
-05
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f(r)= A(Jm (k) =

J, (k, a)

N, (k)| K, =31.230309

10/21/2020
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Solution for this case.
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