PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF online or (occasionally) in
Olin 103

Discussion for Lecture 27 —Chap.9IinF & W

Introduction to hydrodynamics
1. Motivation for topic
2. Newton’s laws for fluids
3. Conservation relations
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Schedule for weekly one-on-one meetings

Nick — 11 AM Monday (ED/ST)
Tim — 9 AM Tuesday

Gao — 9 PM Tuesday

Jeanette — 11 AM Wednesday
Derek — 12 PM Friday



15 |Mon, 9/28/2020 |[Chap.

10/02/2020

4 Small oscillations about equilibrium #11

16 \Wed, 9/30/2020 |Chap. 4 Normal modes of vibration #12 10/05/2020

17 [Fri, 10/02/2020 |Chap. 4 Normal modes of vibration

18 [Mon, 10/05/2020 |Chap. 7 Motion of strings #13 10/07/2020

19 Wed, 10/07/2020 |Chap. 7 Sturm-Liouville equations #14 10/09/2020

20 |Fr, 10/09/2020 |Chap. 7 Sturm-Liouville equations

21 |Mon, 10/12/2020 (Chap. 7 Fourier transforms and Laplace transforms

22 (Wed, 10/14/2020 |Chap. 7 Complex variables and contour integration

23 |Fri, 1016/2020 |Chap. 5 Rigid body motion

24 (Mon, 10/19/2020 |Chap. 5 Rigid body motion #15 10/21/2020

25 Wed, 10/21/2020 |Chap. & Elastic two-dimensional membranes #16 10/23/2020

26 (Fri, 10/23/2020 |Chap. 5,7,6 |Review #17 10/28/2020
» 27 (Mon, 10/26/2020 |Chap. 9 Mechanics of 3 dimensional fluids #18 10/30/2020

10/26/2020
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Homework #18

PHY 711 -- Assighment #18

Oct. 26, 2020
Read Chapter 9 in Fetter & Walecka.

1. Consider the example discussed in class on slides 20-24 concerning the flow of an
incompressible fluid in the z direction in the presence of a stationary cylindrical log
oriented in the y direction. For this problem, consider the case where the log is
replaced by a stationary sphere. Find the velocity potential for this case, using the
center of the sphere as the origin of the coordinate system and spherical polar
coordinates.
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Hydrodynamic analysis
Motivation
1. Natural progression from strings, membranes,
fluids; description of 1, 2, and 3 dimensional
continua
2. Interesting and technologically important
phenomena associated with fluids

Plan

Newton’s laws for fluids
Continuity equation
Stress tensor

Energy relations
Bernoulli’'s theorem
Various examples
Sound waves

S il o A



Your questions —

From Tim
1. How come the pressure at point 1 on pg.14 includes p_atm? Is it because the
atmosphere pushes on the syringe back, which then pushes on the fluid?

From Nick
1. What is the difference between F_applied and f_applied?

2. What is \Phi representing?
3. lIs irrotational flow allowed to oscillate up and down or side to side, or pulse? but

just not spin?

From Gao
1. What aspects do over simplified Bernoulli's equation not include in studying fluid
dynamics?



Newton’s equations for fluids
Use Euler formulation; following “particles” of fluid

Variables: Density p(x,y,z,t)
Pressure p(x,y,z,t)
Velocity  v(x,y,z,t)
ma=F
m — pdV
dv

a—
dt

KF—->FK . +F

app pressure




— —

p(x) p(x+dx)

X (_p(x_l_dxa Y Z) ‘|‘p(X, V, Z))dde

— (—p(x_l_dx’yc’iz)_l_p(xayaz))dXdde
X

pressure

__P gy
OX
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Newton’s equations for fluids -- continued

ma ::applied T Fpressure m = pd V
A\
,OdV E — fapplied L dV o (Vp )dV _ Fapplied
v applied m
= applied Vp
dt Fpressure = _Vp dv



Detailed analysis of acceleration term:

V = V(x,y,z,t)
dV:@de+8de+6vdz ov
dt Oxdt oydt o0z dt ot
dv GV ov ov ov

=—V +—V +—V +—
dr  ox oy 7 0Oz Ot

av =(v- V)V+6—V

dl Ot
Note that : VEVX+V Y +V.2Z
a—vv +@v +@v —V(lv-v)—vx(va)
Ox oy = 0Oz 2



Newton’s equations for fluids -- continued

dv ov
IOZ:IO((VV)V_I_EJ :pfapplied _Vp

1 oV
p[V(EV°Vj—VX(VXV)+5j =Pt iea — VD

a—V+V(
ot

app

%vz)—vx(va):f h.ed—@
Jo,



Your question — What is irrotational flow?

Irrotational flow: Vxv=0

fov, Ov, ) ., (c%/x Ov, ) [0V, Ov,
V x V=X —_ + y — +7 _
oy Oz Oz Ox ox Oy

Which of the following vector functions have zero curl?
a. v=Cx (C 1is a constant)

b. v=Cxx

c. v=Cyx



Solution of Euler’s equation for fluids

%+V( ) V><(V><V)=f oy

Consider the following restrictions:
I. (Vxv)=0 ‘irrotational flow"

= v=-VO® O i1s "velocity potential"

2. 1 =—-VU conservative applied force

applied
3. = (constant)  incompressible fluid
o\— VCD
( )+V(%v2):—VU—E
Ot o,

:>V(p+U+ % —agjzo
Jo, Ot



Bernoulli's integral of Euler’s equation for irrotational and

iIncompressible fluid

V(£+U+ V —82)—0
Jo, ot

Integrating over space :

where v=-VO(r,r)= —V(CD(r, H+C' (t))

Piu+nr =22
yo, ot
L iU+l Ly? 290 _ =0

yo, ot

Bernoulli's theorem



Examples of Bernoulli's theorem

LA g g Ly? — ob _ =0

o, Ot

Modified form; assuming 88;‘; =0
P

4+ U+ % v? = constant

o,

P1= P2 = Pum

U -U, =gh -
v, =0

Py +iv?=L24p,+107
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Examples of Bernoulli’'s theorem -- continued

P1= P2 = Paum
U -U, =gh
v, =0
&+U1+%vl
Yo,
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Examples of Bernoulli’'s theorem -- continued

iU+ 1y? = constant

A
r/ /
[
L» | - 7 e
‘ /

F
pl Z patm p2 — patm
U =U,
vA=v,a continuity equation
Py +ivi=L240 +1y)
yo,
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Your question -- How come the pressure at point 1
on pg.14 includes p_atm? Is it because the
atmosphere pushes on the syringe back, which then
pushes on the fluid?

Comment — All surfaces open to the air is in
equilibrium with the atmospheric pressure.



Examples of Bernoulli’'s theorem -- continued

£ +U +1 v = constant

*@ T

w
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Examples of Bernoulli’'s theorem — continued
Approximate explanation of airplane lift

Cross section view of airplane wing
http://en.wikipedia.org/wiki/Lift %28force %29

(D
e -

lower

U, =U,
ﬁ+Ul+%v12 &+U2+%v22
P P

P>~ pl_Ep(Vl _sz)
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http://en.wikipedia.org/wiki/Lift_(force)

Your question -- What aspects do over simplified Bernoulli's
equation not include in studying fluid dynamics?

According to a Scientific American article, the conclusion
that v,>v, because of the shape of the airplane wing is not

quite true. Numerical modeling reveal a more complicated
picture.

https://www.scientificamerican.com/article/no-one-can-explain-why-planes-stay-in-the-air/



https://www.scientificamerican.com/article/no-one-can-explain-why-planes-stay-in-the-air/

)

At NASA Ames Fluid Mechanics Laboratory, streamlines of dye in
a water channel interact with a model airplane. Credit: lan Allen
(copied from Scientific American page mentioned above).






Continuity equation connecting fluid density and velocity:

op
Ly —()
~ V(o)

Z—'[;+p(v-v)+(Vp)-V=O

. dp Op
Consider: = +(Vp) v
o FP)

= ac,{—f +p(V-v)=0 alternative form

of continuity equation



Some details on the velocity potential
Continuity equation :

op
L v (pv)=0
ot (ov)

(Z—'[;er(V-V)Jr(Vp)-V =0

For incompressible fluid: p = (constant )

=>V-v=0

Irrotational flow: Vxv=0 =>v=-VO
=V'0=0



Example — uniform flow

b

V@D =0

0°® 0'Dd 0°D
—+—+—=0

Ox oy Oz

Possible solution ;

O=—v:z
v=-VD=v7

10/26/2020 PHY 711 Fall 2020 -- Lecture 27

\AAAAL

25



Example — flow around a long cylinder (oriented in

the Y direction)

\AAAAL

VD =0
L
or

r=a
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Laplace equation in cylindrical coordinates
(r,0,defined 1n x-z plane; y representing cylinder axis)
vzq):o:l 0 racp+ 12 82612)+82C?
ror or r° 00" oy
In our case, there 1s no motion in the y dimension
= ®(r,0,y)=(r,0)

From boundary condition : v, (r —> OO) =V,

%(D (r = o0)=—v, = ®(r — 0,0)=—v,rcosd
z

2
Note that : & 002s 0 =—cos{

06

Guess form: ®(r,8)= f{r)cos®



Necessary equation for radial function

10 o |1

——F == =0

ror or r’ 4

f(r)=Ar+ L where A, B are constants
r

Boundary condition on cylinder surface::

ol

or | _

df(r—a) 0 = A—£

dr a’
— B = Aa’

Boundary conditionato: = A4=-v,



2
D(r,0)=—v, [r + a_) cosd

r
2
v, :—@E:v{l—a—zjcosﬁ
or v
1 0O a” ) .
Vo :—;%:Votl—Fr—szlne

For 3-dimensional system, consider a spherical obstruction
Laplacian in spherical polar coordinates:
2
V2®:O:%i(r26£j+ 21. a(sin08®j+ - .12 8(12)
r° or or r°siné 06 00 ) r°sin" 6 op
to be continued ...
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