PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF online or (occasionally)
in Olin 103

Plan for Lecture 27

Chap. 9 in F & W: Introduction to
hydrodynamics

1. Motivation for topic

2. Newton’s laws for fluids

3. Conservation relations
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In this lecture we will begin an introductory treatment of the mechanics of fluis.



16|Mon, 9/28/2020 |Chap. 4 Small oscillations about equilibrium #11 10/02/2020

16 |Wed, 9/30/2020 |Chap. 4 Normal modes of vibration #12 10/05/2020

17 |Fri, 10/02/2020 |Chap. 4 Normal modes of vibration

18|Mon, 10/05/2020 (Chap. 7 Motion of strings #13 10/07/2020

19 |Wed, 10/07/2020 [Chap. 7 Sturm-Liouville equations #14 10/09/2020

20|Fri, 10/09/2020 |Chap. 7 Sturm-Liouville equations

21 |Mon, 10/12/2020 (Chap. 7 Fourier transforms and Laplace transforms!

22 |Wed, 10/14/2020 [Chap. 7 Complex variables and contour integration

23|Fri, 10/16/2020 |Chap. 5 Rigid body motion

24|Mon, 10/19/2020 [Chap. 5 Rigid body motion #15 10/21/2020

25|Wed, 10/21/2020 [Chap. 8 Elastic two-dimensional membranes #16 10/23/2020

26|Fri, 10/23/2020 |Chap.5,7,8 |Review #17 10/28/2020
- 27 |Mon, 10/26/2020 (Chap. 9 Mechanics of 3 dimensional fluids #18 10/30/2020
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There is a homework problem based on today’s lecture material



Homework #18

PHY 711 -- Assignment #18

Oct. 26, 2020
Read Chapter 9 in Fetter & Walecka.

1. Consider the example discussed in class on slides 20-24 concerning the flow of an
incompressible fluid in the z direction in the presence of a stationary cylindrical log
oriented in the y direction. For this problem, consider the case where the log is
replaced by a stationary sphere. Find the velocity potential for this case, using the
center of the sphere as the origin of the coordinate system and spherical polar
coordinates.
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This problem involves a description of simple fluid motion.



Hydrodynamic analysis
Motivation
1. Natural progression from strings, membranes,
fluids; description of 1, 2, and 3 dimensional
continua
2. Interesting and technologically important
phenomena associated with fluids

Plan

Newton’s laws for fluids
Continuity equation
Stress tensor

Energy relations
Bernoulli’s theorem
Various examples
Sound waves
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Here is a list of topics that will be covered in the next few lectures.



Newton’s equations for fluids
Use Euler formulation; following “particles” of fluid

Variables: Density  p(x,),z,t)
Pressure p(x,y,z,t)
Velocity v(x,y,z,t)
ma=F
m— pdV
dv

a—>—
dt

Fo>F, .tF

pressure
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Newton’s laws need to be adapted to describe the physics of fluids. Here pressure is
important and more generally, the functions used to describe fluids depend on position and
time.



) =

p(x) p(x+dx)

= (— p(x+dx,y,z)+ p(x,y, z))dydz

(- p(x+dx, y;zZ) + p(x,9,2)) dxdydz
X

pressure

__P gy
Ox
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Pressure acts in all directions. Here we argue that the spatial derivative of the pressure
applies a force to a volume of fluid.



Newton’s equations for fluids -- continued

applied + Fpressure

dv
pdV Z = fapplied pdV - (Vp)dV

ma=F

dv
p E = pfapplied - vp
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It is convenient to write Newton’s law in terms of the mass density, velocity, and pressure
of the fluid.



Detailed analysis of acceleration term:

v=v(x,y,z1)

dv ovdx ovdy ovdz oOv
=t ——t——+ —

dt  oxdt oydt ozdt ot
dv 0Ov N ov ov ov

= V. V. + V. +
dt  Ox oy ' Oz ot
CA (v-V)v+ v
dt ot

Note that :

oV Oov Oov

—vV_ +—V +—VZ=V(1V-V)—VX(VXV)
Ox oy 7 oz 2

10/26/2020 PHY 711 Fall 2020 -- Lecture 27 8

Because of the continuous nature of the velocity, the total time derivative of the fluid
velocity depends both or the partial derivates with respect to space and with respect to
time as derived here.



Newton’s equations for fluids -- continued

dv
p Z - pfapplied - Vp
1 ov
p(V(EV - Vj - VX (V X V)+ E] = Pof ppiica — VP
ov Vp

—+V(iv2)—v><(V><V):f

applied
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Some alternative expressions for the velocity terms.



Solution of Euler’s equation for fluids

g—: + V(%vz )— vx(Vxv)= £ ptica — vp
Consider the following restrictions:
1. (Vxv)=0 ‘irrotational flow"
=>v=-VO
2. .. =—VU conservative applied force

3. p=(constant) incompressible fluid

M+V(§v2):—VU—V—p
ot o,
:V(£+U+%v2—a£j=0
yo, ot
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The restricted equations have some interesting properties.
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Bernoulli’s integral of Euler’s equation for irrotational and
incompressible fluid

V[£+U+§v2 —62):0
ot

P

Integrating over space:

Py -2

Jo, ot

where v =-VO(r,t)=-V(D(r,1)+C'())

S 1y? —aa;(t) =0 Bernoulli's theorem
Yo,

10/26/2020 PHY 711 Fall 2020 -- Lecture 27 1"

This result is known as Bernoulli’s equation
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Examples of Bernoulli’s theorem

£+U+%v2_8£:0
o, ot

Modified form; assuming y =0

£+ U +%V2 = constant

o,
Pr= P2 = Pum

U -U, =gh

v, =0

D 1.2 _ P» 1., 2
PRAAAEMIRIP NI

‘<¢

This is a problem illustrating Bernoulli’s equation as a syphon.
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Examples of Bernoulli's theorem -- continued
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This example is taken from the PHY 114 textbook
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Examples of Bernoulli’s theorem -- continued

LU+ 1v? = constant

vA=v,a continuity equation
P 1,2 _ P> 1., 2
—+U, +5v, =—=+U, +5v,
P
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Another ezample of Bernoulli’s equation for a syringe.
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Examples of Bernoulli’s theorem -- continued

LU+ 1y? = constant
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Syringe fluid continued.
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Examples of Bernoulli’s theorem — continued
Approximate explanation of airplane lift
Cross section view of airplane wing
http://en.wikipedia.org/wiki/Lift %28force %29

O,

lower

U =U, @

2 2
&+U1 +3V, :&+U2 + 2V,
P
1 2 2
pz_pl_EP(V1 VY )
10/26/2020 PHY 711 Fall 2020 -- Lecture 27 16

This example of Bernoulli’s equation is oversimplified. It appeared in most of the old
textbook, but seems now to be deemphasized. It is given here since it shows some
aspects of fluid flow, although apparently not good enough.



Continuity equation connecting fluid density and velocity:
op
—+V-(pv)=0
= V(oY)
op
E+p(V-v)+(Vp)-v=0
Consider: dp _op +(Vp)-v
dt ot
dp :
==t p(V-v)=0 alternative form
of continuity equation

The continuity equation is an important aspect of fluid flow.
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Some details on the velocity potential
Continuity equation :

op
L v (pv)=0
-t (ov)

ap
ot
For incompressible fluid: p = (constant)

+p(V-V)+(V,0)- v=0

=V-v=0
Irrotational flow: Vxv=0 =>v=-VO
=Vd=0
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For an incompressible and irrotational fluid, it is mathematically convenient to express the
velocity field in terms of a velocity potential field.
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Example — uniform flow
b
a
ya
V0 =0
O’d o'd 9D
2 + 2 + 2 =
ox oy 0z
Possible solution :
O=-y:z
v=-VOb=v17
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For a uniformly fluid flowing along the z direction, the velocity potential and velocity field

are easily written as shown.
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Example — flow around a long cylinder (oriented in
the Y direction)
A
A X
— Vo Z
3 e
—_— —>—)
ﬁ ﬁ
_—
2
Vo =0
oD
= =0
8]’ r=a
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Now consider the uniform fluid in the presence of an impediment. In the is case we

consider a cylindrical log.
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Laplace equation in cylindrical coordinates
(r,0,defined in x-z plane; y representing cylinder axis)
VO=0= lirﬁ;()+i2 82(12) + az?
ror or r° 060" 0y
In our case, there is no motion in the y dimension
= CD(r, Q,y) = CD(r, 6?)
From boundary condition : v_(r — o)=v,

%E(V—)OO)Z—VO :>d)(r—>oo,¢9):—vorcos6’
Z

0% cos

02

Guess form : CD(r, 6?) = f(r)cos@
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Note that : =—cos@

We need to consider solutions of the Laplace equation.
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Necessary equation for radial function

1o o 1
——r———f=0
ror or r /
B
f(r)y=Ar+— where A, B are constants
r
Boundary condition on cylinder surface :
a2 _
57’ r=a
df B
—(r=a)=0=4——
dr ( ) a’
= B=Aad’

Boundary condition atco: = 4=-v,
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Particular equations for this geometry and the application of the boundary values.
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2
O(r,0)= —votr + a_j cos@

r
2
Vv, :—@:VOLI—a—zjcosﬁ
or r
1 00 a’) .
v, =—;%=vo(l+r—2jsm9

For 3-dimensional system, consider a spherical obstruction

Laplacian in spherical polar coordinates:

2
V@:O:ii(ﬁ 6@)4_ 1 i(sin&aq)j+ 1 oo
2 or ) r’sin@ o0 00 ) r’sin*0 0¢’

r-or

to be continued ...
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More details.
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