PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF online or (occasionally) in
Olin 103

Discussion on Lecture 27 --Chap.9InF & W

Introduction to hydrodynamics
Newton’s laws for fluids and the continuity equation
Irrotational and incompressible fluids

Irrotational and isentropic fluids

A

Approximate solutions in the linear limit — next time
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Schedule for weekly one-on-one meetings

Nick — 11 AM Monday (ED/ST)
Tim — 9 AM Tuesday

Gao — 9 PM Tuesday

Tim - 11 AM Wednesday
Jeanette — 11 AM Friday
Derek — 12 PM Friday



15 Mon, 9/28/2020 |Chap. 4 Small oscillations about equilibrium #11 10/02/2020
16 \Wed, 9/30/2020 |Chap. 4 Normal modes of vibration #12 10/05/2020
17 |Fri, 10/02/2020 |Chap. 4 Normal modes of vibration

18 |Mon, 10/05/2020 |Chap. 7 Motion of strings #13 10/07/2020
19 Wed, 10/07/2020 |Chap. 7 Sturm-Liouville equations #14 10/09/2020
20 |Fri, 10/09/2020 |Chap.7 Sturm-Liouville equations

21 Mon, 10/12/2020 |Chap. 7 Fourier transforms and Laplace transforms

22 \Wed, 10/14/2020|Chap. 7 Complex variables and contour integration

23 Fri, 10/16/2020 |Chap. 5 Rigid body motion

24 Mon, 10/19/2020 |Chap. 5 Rigid body motion #15 10/21/2020
25 Wed, 10/21/2020|Chap. 8 Elastic two-dimensional membranes #16 10/23/2020
26 |Fri, 10/23/2020 |Chap. 5,7,8 |Review #17 10/28/2020
27 Mon, 10/26/2020 |Chap. 9 Mechanics of 3 dimensional fluids #18 10/30/2020
28 \Wed, 10/28/2020|Chap. 9 Mechanics of 3 dimensional fluids

10/28/2020
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WAKE FOREST Department of Physics

UNIVERSITY

NEWEST FACULTY JOINT PRESENTATIONS

Thursday Oct. 29, 2020 at 4 PM

llaria Bargigia, PhD
Assistant Professor
Physics Department
Wake Forest University,
Winston-Salem, NC

“Organic Bio-Electronics for In-Vivo Applications”

||O

Conjugated polymers are widely used as bio-electronic interfaces thanks to their inherent sofiness, biocompatibility,
and unparalleled versatility. In particular, thin films of poly(3-exylthiophene) have demonstrated the capability to
restore light sensitivity in animal models and are now being proposed as artificial retinal implants. However, there
1s no clear understanding of the mechanism behind light-induced activation of cellular activity mediated by the
photophysical characteristics of the conjugated polymers: hence, there is a need to address how structural properties
and the local environment control the various functionalities, and to investigate the role played by the interface
between the polymer and biological media. In this talk, I will present our recent efforts made towards the
understanding of how photo-physical properties transform in the presence of relevant biological media and what
these transformations entail in the context of in-vivo biological applications. In particular, I will focus on the nature
of electrochemically induced charges, and their coupling to the local environment.
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Ajay Ram Srimath Kandada, PhD

Assistant Professor
Physics Department
Wake Forest University,
Winston-Salem, NC

“Optical Probes of System-Bath Interactions
in Emerging Semiconductors”

Photo-excitation dynamics in condensed matter not only depend on the intrinsic properties of the material system
but also on the interactions with the environment, termed as the bath. Experimental assessment of the system-bath
interactions forms the core of material investigations and drives the development of optimal material architectures.
Spectroscopies, especially those based on optical probes, predominantly involve identification of the consequences
of such interactions and thereby their quantification. I will discuss the outstanding challenges in the current state-of-
the art spectroscopic techniques used for this purpose. I will also present a roadmap for developing methodologies
based on ultrashort optical pulses and quantum-entangled photons to overcome these challenges, especially in the
context of emerging two-dimensional materials.
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Steve Winter, PhD
Assistant Professor
Physics Department
Wake Forest University,
Winston-Salem, NC

“Towards Many-Body Extensions of Symmetry
Protected Topological Invariants”

In recent years, a particularly prominent field of Quantum Materials research has focused on topological phases of
weakly interacting electrons, such as topological insulators and semimetals. In such materials, due to the specific
symmetries and connectivity of the electronic bands in reciprocal space, the bands cannot be smoothly deformed to
the trivial atomic limit without closing energy gaps or breaking symmetries. This can lead, for example, to
additional gapless states near crystal edges, which are partially protected against scattering, thus providing very
high electronic mobilities. Impressively, a complete classification of non-interacting phases in all 230 space groups
is already given by the topological quantum chemistry (TQC) formalism [1], which links symmetry properties of
states in r- and k-space. The question that we address here 1s whether such a formalism also exists for interacting
phases where electron-electron interactions are strong? We argue that direct application of the TQC formalism to
general many-body spectra is impossible, but a complete classification of the (large) subset of states connectable to
interacting atomic limits can be achieved via extended TQC approaches.

[1] B. Bradlyn et al. Nature, 547(7663), 298 (2017).
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Your questions —

From Tim
1. Is there any physical relationship with the variable epsilon on slide 197

From Nick
1. Can you spend some time going over the big picture of the continuity
equation, and where it comes from and what is means? Are we just

working with an example of a continuity equation here, or is this same
one applied elsewhere?

From Gao

1. About today's lecture, Why do zero velocity curl lead to velocity
potential?



Newton’s equations for fluids

Use Euler formulation; properties described in terms of
stationary spatial grid

Variables: Density p(x,y,z,t)

Pressure p(x,y,z,t)

Velocity  v(x,y,z,t)

Partic

Partic
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Euler analysis -- continued

Particleat7: r.t

Particleat¢': r+vot,t' where Ot =t'—t

For f(r,?):

~ 14 (f(l’»f')—f(l‘,f)+f(l‘+V5t,t)—f(r,t)j
ot—0 ot ot

df of

—=——+(V-V

dt Ot ( )/

1

It can be shown that: (V°V)V = V(E"zj—"x(vx V)



_ v
o TV
dv.  0Ov
F X — X
or f —>v. e +(V V)vx
dv 0Ov
For f —v, d—::a—ter(V Vv,
dv. Ov
F ==y (ve
or f —>v, ey +(v-V)v,
In vector form av _ v +(V-V)V
dt Ot

Note that (V°V)V=[V i+v i+v ij(vxfﬂrv y+v.z

"ox oy oz



dv ov

In vector form — = +(V-V)V
dt Ot
Note that (v-V)v=|v, QJFV i+v 9
"ox Yoy oz

1
2

=—VM2 — VX(VXV)



Continuity equation:

op

P.v. —0

~ V(o)
g—'[t)+p(v-v)+(v,o)°v=0

The notion of the continuity is a common feature of continuous
closed systems. Here we assume that there are no
mechanisms for creation or destruction of the fluid.
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Continuity equation:

6—'O+V-(,0V):O

Ot

Pt p(V-v)+(Vp)-v =0 .
ot velocity
For incompressible fluid: p = (constant) potential
—=>V-v=0 ‘
Irrotational flow: Vxv=0 —~v=_Vb

For irrotational flow of an incompressible fluid: V’® =0
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Your question

Why does V xv =0 imply that v=—VO?

Consider: VO = agi + @Eﬁ + 822
Ox oy Oz

2 2
= oo — oo = (0 Similar results for other directions.
Y 0y0z 0zOy

Vx(VO)




Example — uniform flow

b

V@D =0

0°® 0'Dd 0°D
—+—+—=0

Ox oy Oz

Possible solution ;

O=—v:z
v=-VD=v7
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Example — flow around a long cylinder (oriented in

the Y direction)

\AAAAL

VD =0
L
or

r=a
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Laplace equation in cylindrical coordinates
(r,0,defined 1n x-z plane; y representing cylinder axis)
vzq):o:l 0 racp+ 12 82612)+82C?
ror or r° 00" oy
In our case, there 1s no motion in the y dimension
= ®(r,0,y)=(r,0)

From boundary condition : v, (r —> OO) =V,

%(D (r = o0)=—v, = ®(r — 0,0)=—v,rcosd
z

2
Note that : & 002s 0 =—cos{

06

Guess form: ®(r,8)= f{r)cos®



Necessary equation for radial function

10 o |1

——F == =0

ror or r’ 4

f(r)=Ar+ L where A, B are constants
r

Boundary condition on cylinder surface::

ol

or | _

df(r—a) 0 = A—£

dr a’
— B = Aa’

Boundary conditionato: = A4=-v,



O(r,0)=—v,| r+
0P
vV =——=y,| -
or
V -—__J;é%zi——__v
? r 06 ’
voZ

\AAAAL

10/28/2020

For r > w

Vv, cos0r —v,sin 00 = v,z

A
Vy Z

\AAAAL
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Now consider the case of your homework problem --

For 3-dimensional system, consider a spherical obstruction

Laplacian in spherical polar coordinates:

2
voo0- LA, L2 ,00), 1o
or r°siné 06 00 *sin” @ Og

r° or



Spherical system continued:

Laplacian in spherical polar coordinates:

2
VO = O—Li(r an-F 21. 5(8111852) .12 (9C12)
r°or or r°sin@ 06 00 ) r’sin’ @ o
In terms of spherical harmonic functions:

! a(smﬁﬁj L9 ly (6,6)=—1(1+1)Y, (6.9)
sin@ 00 06 ) sin*0o¢p* | " mA

In our case:

3
Y,(6.¢)=, /E cosf

CI3(7’ 0,9)=1(r)Y,,(0,9)

RL/ANG £=0 (Continue analysis for
" - homework)

2
re o dr




Solution of Euler’s equation for fluids
oV
( ) V X (V X V) =f

—+V
ot . -
Consider the following restrictions:

1. (V X V) = () "irrotational tflow"
= v=—VO

2. £, .. =—VYU conservative applied force

3. p=(constant) 1ncompressible fluid

a(_v®)+V(%v2):—VU—E
Ot o,

:>V(p+U+ % —agjzo
Jo, Ot




For incompressible fluid

Bernoulli’'s integral of Euler’s equation for constant p

% p+U+1v2—a£ =0

0 ot
Integrating over space:

LiU+ly —%'D—C()

P
where  v=-VO(r,t) =-V(D(r,1) + C(1))

A
It is convenient to modify ®(r,) - ®(r, )+ [ C(¢")dt’

— — P +U +1 v — 83 =( Bernoulli's theorem

yo, ot



Not all fluids are compressible, but with additional
work we can consider fluids at constant entropy
(no heat transfer).

Under what circumstances can there be no heat
transfer?



Solution of Euler’s equation for fluids -- isentropic

%+V(§v2)—vx(va)=f oy ——
Consider the following restrictions:

1. (V X V) =0  "wrrotational flow"
—>v=-—VOD
2. £, .. =—VYU conservative applied force
3. p#(constant) 1sentropic fluid
A little thermodynamics
First law of thermodynamics: dE. =dQO —dW
For 1sentropic conditions: dQ =0

dE. =—dW =—-pdV



Solution of Euler’s equation for fluids — isentropic (continued)
dE._ =—dW =—pdV

In terms of mass density: p = %
. M
For fixed M and variable V: dp = _Fd V
M
dV = ——de
o,

In terms 1n intensive variables: Let £ =M¢

dE. =Mdg =—dW =—pdV = M%dp

dgz%dp (@—gj :%
0P Jupg P



Solution of Euler’s equation for fluids — isentropic (continued)

(@_8) _p
P gy P

Consider: Vg :tﬁ—gj Vp =£2Vp
P ) oo P
Rearranging : V(g + Ej — vp
P P

Is this useful?
a. Yes
b. No



Solution of Euler’s equation for fluids — isentropic (continued)

ov Vp
E‘FV( ) VX(VXV):fapplied _7
E:V[5+£j
P P
Vxv=0 v=—-VO f =-VU

applied

6(_V(D)+v(%vz)= —VU—V(5+£j
ot o,

:>V(g+p+U+ % —ai)j:o

Jo, ot



Summary of Bernoulli’s results

For incompressible fluid

V[£+U+ V —@]:O
Jo, ot

For isentropic fluid with internal energy density ¢

V(5+p+U+ % —@J—O
o, ot

Here ¢ is the internal energy of the fluid per unit mass. For an
ideal gas fluid, it has a relatively simple form.
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