PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM  MWF online or (occasionally)
in Olin 103

Plan for Lecture 27 --Chap.9inF & W

Introduction to hydrodynamics

1. Newton’s laws for fluids and the continuity
equation

2. Irrotational and incompressible fluids
3. Irrotational and isentropic fluids

4. Approximate solutions in the linear limit

10/28/2020 PHY 711 Fall 2020 -- Lecture 28 1

In this lecture, we will continue our discussion of hydrodynamics which is presented in
Chapter 9 of your textbook.



15|Mon, 9/28/2020 |Chap.

4 Small oscillations about equilibrium #11 10/02/2020
16 Wed, 9/30/2020 |Chap. 4 Normal modes of vibration #12 10/05/2020
17 |Fri, 10/02/2020 |Chap. 4 Normal modes of vibration
18 Mon, 10/05/2020 [Chap. 7 Motion of strings #13 10/07/2020
19 |Wed, 10/07/2020|Chap. 7 Sturm-Liouville equations #14 10/09/2020
20 |Fri, 10/09/2020 |Chap.7 Sturm-Liouville equations
21 (Mon, 10/12/2020 |Chap. 7 Fourier transforms and Laplace transforms
22 |Wed, 10/14/2020|Chap. 7 Complex variables and contour integration
23 |Fri, 10/16/2020 |Chap.5 Rigid body motion
24 Mon, 10/19/2020 |Chap. 5 Rigid body motion #15 10/21/2020
25|Wed, 10/21/2020|Chap. 8 Elastic two-dimensional membranes #16 10/23/2020
26 |Fri, 10/23/2020 |Chap.5,7,8 |Review #17 10/28/2020
27 |Mon, 10/26/2020 |Chap. 9 Mechanics of 3 dimensional fluids #18 10/30/2020

[--]

) 2

Wed, 10/28/2020|Chap. @

Mechanics of 3 dimensional fluids

10/28/2020
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Homework 18 is due Friday.




WAKE FOREST Department of Physics

UNIVERSITY

NEWEST FACULTY JOINT PRESENTATIONS

118,

Thursday Oct. 29, 2020 at 4 PM

llaria Bargigia, PhD
Assistant Professor
Physics Department
Wake Forest University,
Winston-Salem, NC

“Organic Bio-Electronics for In-Vivo Applications”

Conjugated polymers are widely used as bio-electronic interfaces thanks to their inherent softness, biocompatibility,
and unparalleled versatility. In particular, thin films of poly(3-exylthiophene) have demonstrated the capability to
restore light sensitivity in animal models and are now being proposed as artificial retinal implants. However, there
is no clear understanding of the mechanism behind light-induced activation of cellular activity mediated by the
photophysical characteristics of the conjugated polymers: hence, there is a need to address how structural properties
and the local environment control the various functionalities, and to investigate the role played by the interface
between the polymer and biological media. In this talk, I will present our recent efforts made towards the
understanding of how photo-physical properties transform in the presence of relevant biological media and what
these transformations entail in the context of in-vivo biological applications. In particular, I will focus on the nature
of electrochemically induced charges, and their coupling to the local environment.

- wninbo
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Our colloquium for this week features our three newest faculty members presenting
snapshots of their research programs.



Ajay Ram Srimath Kandada, PhD
Assistant Professor

Physics Department

Wake Forest University,

Winston-Salem, NC

“Optical Probes of System-Bath Interactions
in Emerging Semiconductors”

Photo-excitation dynamics in condensed matter not only depend on the intrinsic properties of the material system
but also on the interactions with the environment, termed as the bath. Experimental assessment of the system-bath
interactions forms the core of material investigations and drives the development of optimal material architectures.
Spectroscopies, especially those based on optical probes, predominantly involve identification of the consequences
of such interactions and thereby their quantification. I will discuss the outstanding challenges in the current state-of-
the art spectroscopic techniques used for this purpose. I will also present a roadmap for developing methodologies
based on ultrashort optical pulses and quantum-entangled photons to overcome these challenges, especially in the
context of emerging two-dimensional materials.
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Steve Winter, PhD
Assistant Professor
Physics Department
Wake Forest University,
Winston-Salem, NC

“Towards Many-Body Extensions of Symmetry
Protected Topological Invariants”

In recent years, a particularly prominent field of Quantum Materials research has focused on topological phases of
weakly interacting electrons, such as topological insulators and semimetals. In such materials, due to the specific
symmetries and connectivity of the electronic bands in reciprocal space, the bands cannot be smoothly deformed to
the trivial atomic limit without closing energy gaps or breaking symmetries. This can lead, for example, to
additional gapless states near crystal edges, which are partially protected against scattering, thus providing very
high electronic mobilities. Impressively, a complete classification of non-interacting phases in all 230 space groups
is already given by the topological quantum chemistry (TQC) formalism [1], which links symmetry properties of
states in r- and k-space. The question that we address here is whether such a formalism also exists for interacting
phases where electron-electron interactions are strong? We argue that direct application of the TQC formalism to
general many-body spectra is impossible, but a complete classification of the (large) subset of states connectable to
interacting atomic limits can be achieved via extended TQC approaches.

[1] B. Bradlyn et al. Nature, 547(7663), 298 (2017).
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Newton’s equations for fluids
Use Euler formulation; properties described in terms of
stationary spatial grid

Variables: Density  p(x,),z,t)
Pressure p(x,y,z,t)
Velocity v(x,y,z,t)

- ) Particle at¢: r,¢
Lt) .
Particle at #': r+ vor,t'
I'=t+ot
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Resuming our discussion of Newton’s equations for fluids. For reference, this approach is
named for Euler and is based on the continuous fluid being represented within an
infinitesimal volume.



Euler analysis -- continued

Particleatz: r,¢

Particleat¢': r+vot,t' where ot =1t'-t
For f(r,t):

df . f(rat')_f(rat) f(r+V§t9t)_f(r9t)
—=]im +

dt 510 ot ot

df of

—=——+(V-V

dt ot ( )f

Example: (v-V)v= V(%vzj—vx(va)
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While the infinitesimal volume moves from t to t’, the spatial position moves from r to r+v
ot



Continuity equation:

op

i v/ =0

5 Vo (ov)

9p _

E‘FP(V'V)-F(V,O)-V—O velocity
potential

For incompressible fluid: p = (constant)

=V-v=0 ‘

Irrotational flow: Vxv=0 = v=-VOb

For irrotational flow of an incompressible fluid: V*® =0
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Another aspect of the fluid is the continuity equation. This simplifies to a velocity field
which has zero divergence.

For irrotational flow the velocity field has zero curl and therefore can be written in terms of
the velocity potential. Irrotational flow of an incompressible fluid satisfies the Laplace
equation.



Example — uniform flow
b
a -—>
ya
V0 =0
O’d o'd 9D
2 + 2 + 2 = 0
ox oy 0z
Possible solution :
O=-y:z
v=-VOb=v17
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Consider an example of irrotational flow of an incompressible fluid. In this case the fluid is
flowing uniformly along the z axis.



Example — flow around a long cylinder (oriented in
the Y direction)
A
A X
Vo Z =a A
— Vo Z
3 e
—_— —>—)
ﬁ ﬁ
_—
2
Vo =0
oD
— =0
8]’ r=a
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Now imagine the there is a log that distorts the flow. Here the long axis of the logis in
the direction perpendicular to the screen. At the boundary of the log, the radial velocity is
0.



Laplace equation in cylindrical coordinates
(r,0,defined in x-z plane; y representing cylinder axis)
VO=0= lirﬁ;()+i2 82(12) + az?
ror or r° 060" 0y
In our case, there is no motion in the y dimension
= CD(r, Q,y) = CD(r, 6?)
From boundary condition : v_(r — o)=v,

%E(V—)OO)Z—VO :>d)(r—>oo,¢9):—vorcos6’
Z

0% cos

02

Guess form : CD(r, 6?) = f(r)cos@

10/28/2020 PHY 711 Fall 2020 -- Lecture 28 1"

Note that : =—cos@

Setting up and solving the boundary value problem.
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Necessary equation for radial function

B
f(r)y=Ar+— where A, B are constants
r

Boundary condition on cylinder surface :
oD

8}” r=a

df B
;(rza)=0=/1—a!—2

=0

= B= Aa’
Boundary condition atco: = 4=-v,
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Some details.
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2
a
CD(r,@) =—V,| ¥ +— |cosO
r
2
oD a
v, =——=V,| 1l —— [cosO
or r
1 0D a ).
Vg =————=—V| l+— |sind
r 060 r
For r >
v —> v, cos OF — v, sin 00 = v,z
A
A X
Vo Z =a 2
— v,
I V4 —
_— —;
_—
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Full solution and simplified behavior far from the log.
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Now consider the case of your homework problem --

For 3-dimensional system, consider a spherical obstruction

Laplacian in spherical polar coordinates:

2
v2c1>=0=i23(r25q)j4r 21, i(sin96®j+ ; ,12 aq2>
or r°sind 06 00 ) r°sin“@ op

r-or
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Spherical system continued:
Laplacian in spherical polar coordinates:
2
VD :O:%Q(rz a®j+ 5 1 i[sin6’aq)j+ 5 1 5 0 qz)
r°or or r-sinf 06 00 ) rsin” 0 op
In terms of spherical harmonic functions:

1 of(. ,0 1 & _
[. —(sln9£j+ma—¢zjm(9,¢)——l(l+1)Y,m(9,¢)

In our case:

3
Y, (0.¢)= '/E cos &

O(r,0,9) = f(1)Y,,(0,9)

ii rzi _l(l+1)f:O (Continue analysis for
rrdr\ dr r homework)
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Solution of Euler’s equation for fluids
ov ) Vp
5+ V(%v )— v X (V X V) = e ———

Consider the following restrictions:
1. (Vxv)=0 ‘irrotational flow"
> v=-VO

2. £, ..=—VU conservative applied force

3. p=(constant) incompressible fluid

W+V(§v2):—VU—E

:V(£+U+%v2——j=0
yo, ot
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Consider a more complicated situation where there is a pressure gradient and applied

potential. Specializing to the case of irrotational flow and arriving at the Bernoulli

equation.



Bernoulli’s integral of Euler’s equation for constant p
oD
v Ziu+v - =0
yo, ot
Integrating over space::

£+U+%ﬁ—%§z€@

P

where v=-VO(r,¢)= —V(CD(r,z‘) + C(t))

=2, u +1v? —aa;(t) =G, Bernoulli's theorem
P

For incompressible fluid
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Solution of Euler’s equation for fluids -- isentropic

%+V(§v2)— V X (V X V)= £ piica _vr

Consider the following restrictions:

1. (Vxv)=0 ‘irrotational flow"
=>v=-VOD
2. .. =—VU conservative applied force

3. p#(constant) isentropic fluid
A little thermodynamics
First law of thermodynamics: dE,, =dQ—-dW
For isentropic conditions : dQ =0
dE. . =—dW =—-pdV
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Now consider generalizing this result to a possibly compressible fluid under the condition
of zero heat transfer (isentropic).



Solution of Euler’s equation for fluids — isentropic (continued)
dE. . =—dW =—-pdV

: M
In terms of mass density: p = 7

For fixed M and variable V: dp = —ﬂdV

2

dV:—ﬂdp

2

Yo,
In terms in intensive variables: Let £, =Me

dE, =Mde =—dW =—pdV = M%dp

dez%d,o (8—8] =£2
0P Jag-o P
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Here we need to introduce the so called first law of thermodynamics. This condition finds
a general expression for ratio of the pressure and density in terms of the density derivative
of the internal energy density.
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Solution of Euler’s equation for fluids — isentropic (continued)

(%j P
0P )ios P’
o€

Consider: ng(—J Vp:%Vp
Pligo P

Rearranging : V(a + =
Yo,

Is this useful?
a. Yes
b. No
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This can be rearranged in terms of the gradient of the pressure divided by the density.
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Solution of Euler’s equation for fluids — isentropic (continued)

ov Vp
E+ V(%vz)— vx(Vxv)= fopptica ———
vp = V(5+£)
P P
Vxv=0 v=-VO® fopica =—VU

w+v(%v2)= —VU—V[5+£]
ot o,

:>V£g+£+U+%v2—a£J:O
yo, ot
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Finally we arrive at a Bernoulli relation for irrotational flow of an isentropic material.
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Summary of Bernoulli’s results

For incompressible fluid

V(£+U+%v2 _@jzo
yo, ot

For isentropic fluid with internal energy density ¢

V(5+£+U+%v2 —@J:O
Jo, ot
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Summary of results.
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