PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF online or (occasionally)
in Olin 103

Discussion for Lecture 31: Chap. 9 of F&W

Wave equation for sound in the linear
approximation

1. Sound generation

2. Sound scattering
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WAKE FOREST Department of Physics

Thursday, 11/4/2020
4 PM online

" Nicola Gasparini, PhD

Imperial College Research Fellow
Department of Chemistry and
Centre for Processable Electronics,
Imperial College

London, UK.

“Status and Perspective of Organic Photovoltaic:
Is it Ready for Commercialisation?”

The current success of organic semiconductor technology 1s mainly driven by the development of
organic light emitting diodes (OLED), which are now routinely employed in display technologies. In
the last decade, however, organic photovoltaics (OPV), leveraging the impressive improvement in
device efficiency and stability, have gradually moved from a lab curiosity to a niche market.!"! Their
recent success has coincided with the rapid development of effective replacements for the fullerene-
based materials that have been prevalent as electron acceptor materials until recently; namely the
small molecule nonfullerene acceptors (NFAs)."”! Through strategic design, an acceptor-donor-
acceptor (A-D-A) configuration afforded highly absorbing small molecules with tunable energetics,
thereby allowing the achievement of record power conversion efficiencies (PCEs) in OPVs. This
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Your questions —
From Tim —

1. You describe the wave as longitudinal. So would the displacement vector r that
is used best be described in cylindrical coordinates?

2. It seems that the Laplacian being applied is in cylindrical coordinates. | was also
curious about the Laplacian relation discussed on slide 14.

From Gao —
1. About today's lecture, where does this equation come from?

V2O + k2D =—f(r, )



27 |Mon, 10/26/2020 |Chap. 9 Mechanics of 3 dimensional fluids #18 10/30/2020
28 Wed, 10/28/2020|Chap. 9 Mechanics of 3 dimensional fluids
29 Fri, 10/30/2020 |Chap. 9 Linearized hydrodynamics equations #19 11/02/2020
30 (Mon, 11/02/2020 |Chap. 9 Linear sound waves #20 11/04/2020
31 |Wed, 11/04/2020 |Chap. 9 Linear sound waves Project topic |11/06/2020
32 |Fri, 11/06/2020 |Chap. 9 Non linear effects in sound waves
33 Mon, 11/09/2020 |Chap. 9 Non linear effects in sound waves and shocks
34 Wed, 11/11/2020 |Chap. 10 Surface waves in fluids
35 |Fri, 11/13/2020 |Chap. 10 Surface waves in fluids; soliton solutions
36 (Mon, 11/16/2020 |Chap. 11 Heat conduction
37 Wed, 11/18/2020 |Chap. 12 Viscous effects
38 |Fri, 11/20/2020 |Chap. 13 Elasticity
39 Mon, 11/23/2020 Review
Wed, 11/25/2020 Thanksgiving Holidaya
Fri, 11/27/2020 Thanksgiving Holidaya
40 Mon, 11/30/2020 Review
Wed, 12/02/2020 Presentations |
Fri, 12/04/2020 Presentations |l
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Schedule for weekly one-on-one meetings
(EST)

Tim — 9 AM Tuesday

Gao — 9 PM Tuesday

Nick — 11 AM Wednesday
Jeanette — 11 AM Friday
Derek — 12 PM Friday



Comment about the units of sound frequency

Harmonic time dependence of a wave:
O(r,t) = f(r)e = f(r)e”™
Note that @ has units of radians/sec

v has units of cycles/sec (Hz)

4,

Y =—
27T



Solutions to wave equation:
2
1 07D

VD
¢’ Ot?

0

Plane wave solution:

2
D(r,t) = Ae™" ' where k’= (ﬂj
c

Note that these sound waves are "longitudinal”

-- the velocity wave direction 1s along the propagation
direction: SV = -V = —j4ke™ i



Some comments about Monday’s lecture
Equations to lowest order in perturbation :

@_I_(V.V)V:fapplied_v—p — @:_@
ot ot o
op 0op
—+V-pv)=0 = ——+ o, V-ov=0
Py (,O ) Py Lo

Note that:

In terms of the velocity potential: Sv==V®(r,t)=-Vd(r,1)

Sv=-VD t
for @ (r,t)=D(r,t)+ |dt'K(@"
G;V:_V5p :V(_%cf+5pjzo (r.e)=(r,0)+ |
p p
s 0 o5 0 \_5(1) s op — K(t)
8—;0+p0V-5V=O :>a—;0—,00V2CD:O o Py

_8(D+5p20
o p,



Some comments about Monday’s lecture -- continued

Expressing pressure in terms of the density:

p=p(s,p)=p,+0p where s denotes the (constant) entropy
Py =P8, 0y)

op = (8—1?] Sp=c’op

op ).
\
V(—a®+5p =0 :V[—aﬁ+c25—p]=0
ot p, ) ! Po
\ 2 2
(2,02 g 220,00
ot £ ot p, Ot
2
@_povz(bzo :)aq)—czvz(p—o




Some comments about Monday’s lecture -- continued

Wave equation for air :

82
ot’

— VD =0

Boundary values:

Additional relations:

oD
OSp=c6
P O = Lo = o
0°Sp
ot’
2
g 5p—c2v ‘Sp=0
ot’

Impenetrable surface with normal n moving at velocity V :

n-VvVs=

Free surface:

n-ov=—n-vVo



Wave equation with source:

1 0°d
CQ atz :_f(rat)

Solution in terms of Green's function :

d(r,t) = jd3r'jdt'c;(r—r',t—t')f(r',z')

\YAL()

where

2
(V2 Clz ;2 ]G(r —-r',t—t')=-o0(—-r")o(t—1")



Your question — Where does this force term come from?

Comment --
Equations to lowest order in perturbation -- keeping applied force:
ov Vp 0OV Vop
5 + (V V) V= fapplted 7 — 7 = fapplied T
0
op o0op
+V-(pov)=0 — —+p,V:-0v=0
ot (o) or P
: 0
Assuming ov=-V® and op = (51,:? ] Sp=c’Sp and f aplicd = — Y Upplicd
(D 2
% = fapplied o VTé‘p = -V ( a@ / pé;O Uapphedj 0
0 0
52D U . In fact, in our example the
When the dust clears -- — VAP = ——@plied  forcing term will be instead
ot ot described in terms of a

boundary value.



Wave equation with source -- continued:

We can show that :

G(r—r',t—t')=

o

/

\

t'—(t T

‘r—r'

C

J

\

/

47z‘r

_r'




Derivation of Green’s function for wave equation

2
[Vz — Clz ;2 ]G(r —r',t—t")=-0(r—-r)o(—-1")

Recall that

s
St—t)=— |e ™ g
(t—1") 272_[0



Derivation of Green’s function for wave equation -- continued

Define: G(r,w)= jG(r,t)ei”tdt

~~/

G(r, ) must satisfy :

(V2 +k2)5(r—1",60)=—5(r—r') where k° = —-



Derivation of Green’s function for wave equation -- continued

(V2 +k° ﬁ(r —r',0)=-5(-r')

Solution assuming isotropy inr —r':

iik‘r—r"

5(1‘—1",@):

4ﬂh—r'

Check - - Define Rz‘r—r' and for R>0:

~ 2 ~ ~
(V2 +£°)G(R, @)= ; d‘jzz (RG(R, )+ K*G(R,0)=0



Derivation of Green’s function for wave equation -- continued

For R >0
N 2
(v2 + k2 )G(R, ) = ; ;; _(RG(R, ®))+ ©*G(R,0) =0
& (RG(R.0))+ K (RG(R,0))=0
(RG(R, @)= 4 " + Be ™
ikR —ikR
— 5(R,a))= AS—+B°

R R



Derivation of Green’s function for wave equation — continued
need to find A and B.

Note that: V° L ~5(r-r')
4ﬂh—r'
= A=B= L
47
" eiikR
G(R = —
( ’ a)) 4R



Your question — where did this come from?

Note that: V* 1 =—5(r—r')
4ﬂh—r'

Comment — the “proof” will be covered more carefully in
PHY 712. The basic approach is to assume it is true and
test that an integral on both sides of the equation in a small
volume including r=r’ gives a consistent result.



Derivation of Green’s function for wave equation — continued

1 ¢~ ol
Gr-r,i—1)=— | Glr-r", 0 ™" da
27 <
00 iik‘r—l"
_ L € e—ia)(t—t')da)
27 = 472‘1' —r
1 00 ii%‘r—r' | |

€ e—za)(t—t )d&)

27 ¥ 47z‘r —r



Derivation of Green’s function for wave equation — continued

e

1 00 ii%‘r—r"

Glr-r',t—1)=

o0

. 1 -
Noting that — | e “dw

2 *

= Gr-r',t—1)=

0

27 7 472‘1‘ —r

e—ia)(t—t')da)

= o(u)

,

\

['_‘r—r'\\
I —| I F

C y )

4ﬂh—r'



=>In order to solve an inhomogenous wave equation
with a time harmonic forcing or boundary term, we
can use the corresponding Green'’s function:

J_rik‘r—r'

e
4ﬂh—r'

~/

GQr —r'

)=

In fact, this Green’s function is appropriate for solving
equations with boundary conditions at infinity. For
solving problems with surface boundary conditions where
we know the boundary values or their gradients, the
Green’s function must be modified.



Green's theorem

Consider two functions /(r) and g(r)
Note that : j(hvzg — szh)z’3r = §(th — gVh)-id’r
S

VKB - _F(r.o)
(V2+k2)G(r—r ,0)=—-0(r—r")

h < ©; g(—)é

j(cf(r, )o(r—r')— Gq

7

—r', )f(r,a)))d3r=

—r, )— 5Qr -, w)VCB(r, a)))- nd’r

§(C5(r, a))Vé(]

S




j((i)(r,w)5(r —r')- G(|r —r'|,a))f(r,a)))d3r =

Vv

Cj)(@(r,co)Véﬂr — r'| ,a)) — G(|r — r'| ,w)V@(r,w)) -nd’r
S
Exchanging r <> r":

j(ﬁ)(r',a))5(r —l") — G(|r _r'|>0))f(r',a)))d3r' _

v

C"A)(Cf)(r',a))Véqr —r'|,a)) — G(|r —r'|,a))VCb(r',a)))-ﬁd2r'

S

If the integration volume V' includes the pointr =r":

D(r,w) = jé(‘r —r' ,a))f(r',a))d3r'+

CJS(C'Iv)(r',a))V(N?(‘r—r'

S

,a))— é(‘r —r' ,w)Vﬁ)(r',w))-ﬁdzr'

=>extra contributions from boundary




Wave equation with source:
1 0°®
2
VO ————=—f(r,1)
c” Ot

Example:
f(r,t) = time harmonic piston of radius a, amplitude &z

can be represented as boundary value of @(r,?)
A
Z

-
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Treatment of boundary values for time-harmonic force:

, a))f(r' ,0)d’r'+

D(r, ) = I@J(jr —r'
V
fl@, o)V Glr—r V' B, @) ~d>
S

Boundary values for our example:

, a))— 5@1’ —r

-

oD 0 for x’+y’>a’

- =
Oz Y

. 2 2 2
iwea for x"+y" <a

Note: Need Green's function with vanishing gradient at z =0
ik|r—r ik|r =T

,a))z + — wherez'=-z"; z>0
47z‘r—r" 472‘1‘— r"

G(‘r—r'




)a&’)(r',a))

Oz

or.w)=— § Gr-rlao dx' dy’

S:z'=0

ik|r—r'| ik|r—F'|
~/

C%r—rﬁaﬂ: 4ﬂh—r'+

4dr—F

ik|r—r'|

5@%{' : z>0

z'=0

b a))zv:() —

Zﬂh—r'

'

where z'= —z":

5

z>0



D(r,w) =— §> 5@ )aq)(;’w)dx'dy'
S:z'=0
a lk|r—r'|

= —la)gajr dr' jd¢

0

z'=0
Integration domain: x'=r'cos¢'

y'=r'sme'’

Forr >> a;

Vo . 72_

Assume r 1sin the yz plane; ¢ =2
r =sindy + cos 0z

'sindsin @'




iwea e™ ¢

2r
jr'dr' jd¢ve—ikr'sin9sin¢'
0

0

D(r,w) = —

2T r

1 2r o
Note that : o Id¢'e"“sm¢ =J,(u)
27

ikr a
| r'dr' J,(kr'sin 6)

0

e

= CIN)(r, W) = —lwea
r

Tudu]o (u) =wJ,(w)

s e J, (kasin )
r  kasin@

— O(r,w) = —ivea



Energy flux: j, =ovp
Taking time average: < je> = %9?(5Vp*)

=4 o vo)-iawo) )
Time averaged power per solid angle :

<dP> <Je> ~ 221,006‘ JEYRN

dg2 2 kasin @




Time averaged power per solid angle :

dP
dQ2

= i)

N

-rr

1

J,(kasin 0)[°

2 374 6
=—p.cc’k’a
2,00

0.25
0.24 1

023 4

kasin @

1
a0
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Scattering of sound waves — .
for example, from a rigid cylinder /l

1. W<

= X

l

Figure 51.8 Scattering from a rigid cylinder.

Figure from Fetter and Walecka pg. 337
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Scattering of sound waves —
for example, from a rigid cylinder

Velocity potential --
Or)=D. (r)+d_(r) O (r)=ée*"

mnc mnc

Helmholz equation in cylindrical coordinates:

1o 0 1 © 0
(V2 +k2)®(r):0:[;ﬁrr@r + e + ~ +k2]CD(r)

Assume: @ (r) = i e R ()

where : >
dr rdr r

2 2
(d—+l d _m +k2] R (r)=0



Z i"e™J (kr)

m—=—a0

Figure 51.8 Scattering from a rigid cylinder.

®, (r)= > C,e™H,(kr) whereHankel function

represents an outgoing wave: H_ (kr)=J (kr)+iN (kr)

. oD
Boundary conditionatr =a: —| =0

or

r=a

") (ka)+C H' (ka)=0  C, =" n kD)
"0 (k)
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& (kA
O(0)== ) 1" e )

Asymptotic form:

2 i
i"H (kr) o J—e"
kr— o0 ﬂkr

(I)sc(r) ~ _ - — Z J' (ka) lm¢ e(kr—ﬂ/4)
e =0 () N\ ke

__ /i i S (k) g4
2k = H' (ka)
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do 2
b 7 (#)
J' (ka) i(mg—m/4)
\/7,%sz' (ka)
For ka << 1
do _ ‘f(¢)‘2 ~ L (1-2cos ¢)2
do 8
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