PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF online

Plan for Lecture 33: Chap. 9 of F&W

Wave equation for sound beyond the
linear approximation

1. Non-linear effects in sound waves

2. Shock wave analysis
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In today’s lecture, we will review the basic hydrodynamic equations, specializing to one
dimensional traveling waves, and analyzing some of the effects of nonlinearities.



27 (Mon, 10/26/2020|Chap. 9 Mechanics of 3 dimensional fluids #18 10/30/2020
28 (Wed, 10/28/2020|Chap. 9 Mechanics of 3 dimensional fluids
29|[Fn, 10/30/2020 ||Chap. 9 Linearized hydrodynamics equations #19 11/02/2020
30 (Mon, 11/02/2020 |Chap. 9 Linear sound waves #20 11/04/2020
31 |Wed, 11/04/2020 |Chap. 9 Linear sound waves Project topic |11/06/2020
32 |Fri, 11/06/2020 ||Chap.9 Sound sources and scattering; Non linear effects

» 33 |Mon, 11/09/2020 |Chap. 9 Non linear effects in sound waves and shocks |[#21 11/11/2020
34 (Wed, 11/11/2020 |Chap. 10 Surface waves in fluids
35 |Fri, 11/13/2020 (Chap. 10 Surface waves in fluids; soliton solutions
36 |Mon, 11/16/2020 (Chap. 11 Heat conduction
37 |Wed, 11/18/2020 (Chap. 12 Viscous effects
38 |Fri, 11/20/2020 ||Chap. 13 Elasticity
39 |Mon, 11/23/2020 Review

Wed, 11/25/2020

Thanksgiving Holidaya

Fri, 11/27/2020

Thanksgiving Holidaya

40 |Mon, 11/30/2020 Review
Wed, 12/02/2020 Presentations |
Fri, 12/04/2020 Presentations 11

11/09/2020

PHY 711 Fall 2020-- Lecture 33

Updated schedule




PHY 711 -- Assighment #21

Nov. 09, 2020
Finish reading Chapter 9 in Fetter & Walecka.

1. In class, we discussed how to visualize the non-linear behavior of an adiabatic ideal gas with
parameter y. Using Maple or Mathematica or other software and using a parametric plot
formalism, create an animated gif file to show the traveling waveform s(w), where s is a shape
of your choice and w=x-u(s(w))t. You will also need to choose the value of y as well.
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Homework for Wednesday.



Effects of nonlinearities in fluid equations
-- one dimensional case

Newton - Euler equation of motion :

a—v+(V-V)V=f vp

a / applied ~—

Continuity equation : (Z—'[t) +V -(pv) =0

Assume spatial variation confined to x direction ;

assume that v=vx and f =0.

applled

- V— =
ot  0Ox p Ox
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Starting with the basic hydrodynamic equations and expressing them for the one spatial
dimensional case (along the x axis).



@+v@+ 1 8p =0
o Ox poOx
a—'0+ % +p— v =0
ot ox ox
Expressing p interms of p: p = p(p)
ap a_pa_'o_ ( ) Wher a_p
ox Op Ox op
For adiabatic ideal gas: ap _ yd_p
P P
r—1

Cz(P)—y—p—cg(ﬁJ where c0 = 7Po

p pO ,00

The equations depend on density (rho), pressure (p), and velocity (v).
Here we further assume an ideal gas

express all of the results in terms of density (rho).
and express the results in terms of the parameter gamma.

We need to




2
aV+v@+c (p)a—pzo
ot ox o Ox

a—’0+va—'0+p@—0

ot ox | ox

Expressing variation of v in terms of v( p) :
2

ov 8p+v8v 8p+c (,0)8,0:0

op Ot op Ox o Ox

P 0P, VP _

ot ox op Ox
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Here we also express the velocity in terms of the density rho.



Some more algebra :
2
From Euler equation : v (8’0 +v o ) + < (p) Op =0
op \ ot ox L  Ox
From continuity equation :6—’0 + v@_p =— o p
ot ox op Ox
2
Combined equation : w_ Jo, v op 4 £ (p) 9p =0
op op Ox p Ox
2 2
:(&/j ZC('ZO) @:ii
op p op p
= % + (v + 6)8—'0 =0
ot ox

Combining the results from the two coupled equations, we arrive at a first order differential

equation for rho(x,t).




-1
Assuming adiabatic process: ¢’ =c; ﬁ] 2=
Po Po
0 d A2 o
—v——v=i£ = v=r1tc¢, (ﬁ 'O'
ap dp p £o pO p
(y-1)/2
—y=1 2¢ (ﬁj —1
y =1\ p,
(y-1)/2
=g, (ﬁ]
Lo

Using the results of an adiabatic ideal gas, we can find the explicit functional forms for v
and c as they depend on the density rho.



2+
dp p
% (v + 0)8_,0 =0
ot ox
-1
Assuming adiabatic process: ¢’ =c; (ﬁj co =L
Lo

(r-1)/2 re (y-1)/2
c=co(£j v=+t—2 (ﬁj ~1
Lo =1\ p
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Summary of previous slides.



Traveling wave solution:

Assume: p=p,+ f(x—u(p)t)
Need to find self - consistent equations for
propagation velocity u(0) using equations

From previous derivations : é;—"; +(v+ c)a—’o =0

ox
Apparently : u(p) = vxe

For adiabatic ideal gas and + signs :

(y-1)/2
f_“(ﬁj 2
y=1{p, y—1
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Now we can analyze the results. We introduce the parameter u(rho) as v(rho)+c(rho) for
the + solution; representing a traveling wave.



Traveling wave solution -- continued:

a—p+(vic)a—p=0
ot Ox

Assume: p:po+f(x—u(p)t):p0+f(x—(vic)t)

For adiabatic ideal gas and + signs :

1 (r-1)/2 5
u=v+c=c, re (ﬁj -
y =1\ p, y—1
Solution in linear approxiation:

(7/+1 2 ]
u=v+crv,+c,=¢,| ————|=¢,
y—1 y-1
:>p:p0+f(x—col‘)
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For this case, and evaluating the expressions for the adiabatic ideal gas, we obtain the

given equations.  Checking for the result in the linear limit, we retrieve the expected

behavior.
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Traveling wave solution -- full non-linear case:
Visualization for particular waveform: p = p, + f(x —u(p)t)
Assume: f(w)= p,s(w)
w
P 1y s(x —ut)
Lo
For adiabatic ideal gas:
1 (7—1)/2
+
e |22} 2
y =1\ p, y—1
+1 _1)/2
u=c, 7—(1 +5(x — ut))(7 2__Z
y—1 y—1

In order to visualize what the results mean, we can use Maple or Mathematica in the
parametric plot mode.



Visualization continued:

u=c, (7—H(1 +s(x— ut))(y_l)/2 —Lj
y—1 y—1

Plot s(x—ut) for fixed ¢, as a function of x:

Let w=x—-ut
x=w+ut =w+u(w)t = x(w,t)
y+1 (-2 2
uw)y=c,| —(1+s(w -
() o(y_l( () y_lj

Parametric equations:

plot s(w) vs x(w,t) forrange of w at each ¢
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Details of the parametric formulation
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Summary
op op
—+u(p)—=0
ot (p) ox
Solution:  p=p, + f(x—u(p)t)=p, (1 +s(x— u(p)t))
For linear case: u(p) =c,
For non-linear case: u(p)=c, (7/—1(1 +s(x— ut))(yfl)/2 —~ LJ
Y- V-
Plot s(x—ut) for fixed ¢, as a function of x :
Let w=x—-ut = x=w+ut=w+u(w)t=x(w,t)
y+1 (7-1)/2 2
u(w)y=c,| —(1+s(w -—
() o(y_l( (w)) y_J
Parametric equations: plot s(w) vs x(w,¢) for range of w
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Summary of results.
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Linear wave:

Non-linear wave:

11/09/2020
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Snap shots of solution for an initial Gaussian waveform for the linear and non-linear

solutions.
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Linear wave

=20 =10

Non-linear wave

10
v
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30

Animations from Maple.
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Arl]f;lﬁs's fO; shock wave Solution becomes
ots ot op unphysical
T T 1 1
2 4 6 8
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Note that the vertical axis represents the longitudinal wave displacement. When this
displacement becomes multivalued for a given coordinate x as shown, the solution
becomes unphysical. At this point we need to consider the analysis in a different way.
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Analysis of shock wave -- continued

After shock Before shock
t2 t1
805 6Vy, P op,, V4, 9Py
X
u

Note that in this case u is assumed to be a
given parameter of the system.
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Your textbook discusses the shock wave analysis. Here we assume that there is a region
(blue) where the analysis fails, but assumes that we can properly analyze the physics
before and after the shock. The notation given here is similar to that given in your text.
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Analysis of shock wave — continued
While analysis in the shock region is complicated, we
can use conservation laws to analyze regions 1 and 2

Assume p(x, t) = p(x - ut) ;t\ﬂer shock Before shock
2 ty
pOx,0) = p(x—ut)

P, Vo, P2 Spp. Vg, 3y
v(x,t) = v(x - ut)

X

Continuity equation:

op O(pv o(pv—pu
6_/;+ (ax)zoz ( o ) S(Vz—u)Pz:(Vl_”)Pl

Conservation of energy and momentum:

:>p2+p2(vz_u)2 =D +,01(V1 _u)z

Lo cuy s P vl —uy s 22
:>€2+2(V2 u)+p2 el+2(vl u)+p1
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Some of the details of the analysis before and after the shock event.
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Analysis of shock wave — continued
While analysis in the shock region is complicated, we
can use conservation laws to analyze regions 1 and 2

Summary of equations Al shock Bofors shck
P2, &V, P2 Spy V4, 504
:(Vz_”)pzz(‘ﬁ_”)pl .
2 2 o
=D, +:02(V2 _”) =D +:01("1 _“)
1 1
=6 +=(v,—u) +22 o +=(v, —u)’ + 2
2 P 2 P
Assume that within each regions (1 & 2), the ideal gas equations apply
S S A 3
pr=1p P, r=1p,

It follows that L&+l(v2 —u)z = L&+l(vl _u)z
y=lp, 2 y=lp 2
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Analyzing the equations.
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300

Analysis of shock wave — continued
For adiabatic ideal gas, also considering energy and
momentum conservation:
1 fﬂer shock Before shock
2 t
7/+ & +1 Spo, Vo, P2 Sy Vg, 3P4
p_y=lp  _y+l
p vl p oyl 7
y=1 p
5
4_
<7
Q 5
1,
0 160 / 2(I)0
P5/P4
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Analyzing ratio of the density after and before the shock wave.
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Analysis of shock wave — continued
For adiabatic ideal gas, entropy considerations::

Internal energy density: &= B — C,T
(r=1p
First law of thermo: de& =Tds — pd (i]
yo,

<3l ) o)

s=C,In [%J +(constant)

/e
s, -8 =C, ln(%(%] } 0<s,-5<C, {ln[%j - yln(i—jn
1 2 1
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Analyzing the entropy before and after the shock wave. In general, many more
relationships can be analyzed. Consult your textbook for more details.



