PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF online
Discussion for Lecture 34:
Chapter 10 in F & W: Surface waves

1. Water waves in a channel

2. Wave-like solutions; wave speed
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“Shedding Light on the Gaseous Halos of
Galaxies in the Early Universe”

Simulations predict that galaxy evolution is regulated by the accretion, expulsion, cooling, and
heating of gas in the halos that surround galaxies out to hundreds of kiloparsecs. Distant quasars
can be used to backlight and detect circumgalactic gas in absorption, and to date, tens of
thousands of intervening absorbers have been detected in large spectroscopic quasar surveys.
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27 (Mon, 10/26/2020 |Chap. 9 Mechanics of 3 dimensional fluids #18 10/30/2020
28 (Wed, 10/28/2020|Chap. 9 Mechanics of 3 dimensional fluids
29 [Fri, 10/30/2020 |Chap. 9 Linearized hydrodynamics equations #19 11/02/2020
30 |Mon, 11/02/2020 [Chap. 9 Linear sound waves #20 11/04/2020
31 |Wed. 11/04/2020 |Chap. 9 Linear sound waves Project topic [11/06/2020
32 |Fri, 11/06/2020 |Chap. 9 Sound sources and scattering; Non linear effects
33 Mon, 11/09/2020 [Chap. 9 Non linear effects in sound waves and shocks  |#21 111172020
Wed, 11/11/2020 (Chap. 10 Surface waves in fluids #22 11/16/2020
Fri, 11/13/2020 ||Chap. 10 Surface waves in fluids; soliton solutions
36 |Mon, 11/16/2020 |Chap. 11 Heat conduction
37 (Wed, 11/18/2020 |Chap. 12 Viscous effects
38 |Fri, 11/20/2020 |Chap. 13 Elasticity
39 Mon, 11/23/2020 Review
Wed, 11/25/2020 Thanksgiving Holidaya
Fri. 11/27/2020 Thanksgiving Holidaya
40 Mon, 11/30/2020 Review
Wed, 12/02/2020 Presentations |
Fri, 12/04/2020 Presentations ||
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PHY 711 -- Assighment #22

Nov. 11, 2020
Start reading Chapter 10 in Fetter & Walecka.

1. Work Problem 10.3 at the end of Chapter 10 in Fetter and Walecka.
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Schedule for weekly one-on-one meetings
(EST)

Nick — 11 AM Monday
Tim — 9 AM Tuesday
Gao — 9 PM Tuesday
Jeanette — 11 AM Friday
Derek — 12 PM Friday



Your questions —
From Gao —
1. How does this equation [arise]?

From continuity condition:

b(x) é; = —%(h(x)b(x)v(x t))



Physics of incompressible fluids and their surfaces

Reference: Chapter 10 of Fetter and Walecka
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Consider a container of water with average height h and
surface h+{(x,y,t); (h €=» z, on some of the slides)

Atmospheric pressure 1s in equilibrium with the surface of water
Pressure at a height z above the bottom where the surface is at a height 2+ ¢

p(z)= {Po+pg(h+§_z) Forz<h+(

Here p represents density of water
D Forz>h+(

“—
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Why do we not consider p_;, in this analysis?
a. Because it is a reasonable approximation
b. Because it simplifies the analysis



Euler's equation for incompressible fluid :

dv Vp . Vp
E — J applied _7 = —8Z———

P
10
Assume that v, <<v_,v, —>-g———=0
p Oz
= p(x,y,2,0) = po+ pgl{ (v, y,0) +h—z)  Withinthe

water

Horizontal fluid motions (keeping leading terms):
dv_ 0Ov 1 op o¢

X X

~ :———:—g—

dt ot 0 OX Ox




Consider a surface ¢(x,t) wave moving in the x-direction in a
channel of width b(x) and height h(x):
Continuity condition 1n integral form:

jpdV+ij %—O

74 4 bp(x)(h(x)+<(x,0))%
< || xv b(X>(h(x)+ (x,)) dx

v(x+dx,t)
h( XH
 Z Evaluating continuity condition:
dx O 4’ O
b(x) = —a(h(x)b(x)v(x,t))
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Some details Continuity condition 1n integral form:

jpa’V+jpv %—O

] 1 B@(A) +E ()X
““:EJ x,t) b(x)(h(x)+ (x,t))dx

v(x,t)

b(x)
Here we are assuming that p is constant

= j odV + j ov-dA = p j b(x)—= % dx+pj 3 (B(x)(h(x) + & (x,0)v(x,1))dx =0

= b(x) ; = —%(h(x)b(x)v(x,t))
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From continuity condition:

i 0g __ 0
r ) b( X)E - —a(h(x)b(x)v(x,t))

v(X,1) v(x+dx,t) |
—— | (X e Example (Problem 10.3):

g; b(x)=b,  h(x)=kKx

0 0
b, a—f = —6—x((lcx)b0v(x,t))

a_é’:_K( 5\,) vaﬁvz_g%

5 VXS dt ot O
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Example continued

2 2
a—gz—lc(\ﬂrx@j = ¢ _K(@er@vj

ot Ox o2 ot T oxor
ov 9 0’ 19 o°
ot OX ot Ox OX
It can be shown that a solution can take the form:
£ (x,t)=CJ, (%\/;Jcos(a)t)

: . d> 1d
Note that J, (1) satisfies the equation: ( st —— ljJ0 (u)=0

du~ u du

2(()\/;

Therefore, for u =
VK&

( d> d )Jo(u): W’ ( a’z2 +lijjo(u):_a)—2_]0(u)

X 2-|—
dx” dx du” udu Kg



Example continued

3¢ _ Kg[a_gﬂaz?]

or’ Ox Ox”
2an/x
1) =CJ, (wr)
= {(x,1) [ \/& jcos @

Check:

, Danx ~ 0 0 2an/x
- CJO{ \/@ ]cos(a)t) = Kg(@x +x8x2 jCJO[ \/@ jcos(a)t)




20
£ (x,t)=CJ, [—\/; cos(wt)
JKg J

¢(x,0) 1
0.8
0.6
0.4
0.2

-0.2 41
-0.4
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Imagine watching the waves at a beach — can you visualize
the configuration for the surface wave pattern to approximation
this situation?

a. Long flat beach

b. Beach in which average water level increases

c. Beach in which average water level decreases

TR

[ v, .::':'E:': -.| 3 =
2 s, P Bl B
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A simplier example:

Continuity condition:

/| 0
gl cxy b g = ——(h(0b()V(x.0)
v(x,t) | v(x+dx. 1
— | P (X p—

Special case, where b and h are constant --
For constant b and 4:

% =—h— & (v(x,t))

ot OX
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Example with b and h constant -- continued

=g dC(x,y,t)/dt

v(X,y,t)}— —> v(x+dx,y+dy,t)

Continuity condition for flow of incompressible fluid:

Ot
. : ov
From horizontal flow relations: > =—oV(

2
Equation for surface function: a@ g —ghV*¢ =0
[
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For uniform channel:

Surface wave equation:

ot’

More complete analysis finds:

¢ =S tanh(kh)  where k = 2~
k A

2
a?_(}Zngzo 02:



More detalils: -- recall setup --

Consider a container of water with average height h
and surface h+{(x,y,
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Equations describing fluid itself (without boundaries)

Euler's equation for incompressible fluid:

\Y%
dV:aV+V VV—a—V+V( )+V><(V><V)=—VU——p
dt Ot ot Jo,
Assume that Vxv=0 (irrotational flow) = v=-VO
:V(—@Jr +U+£j:0

ot yo,
— —%E 132+ U+ £ = constant (within the fluid)
! P

For the same system, the continuity condition becomes

V.v=-V®d=0
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Within fluid: 0<z<h+(

oD

- 4+1 v +glz—h)=constant (\We have absorbed Po

ot
—V® =0
At surface: z=h+{

i _oc o o
ot “ox oy

in “constant”

with § = (x,y,

where Ve, =Ve,, X, y,h+C,t
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Full equations:
Within fluid: 0<z<h+(

~=—+1v?+ g(z—h)=constant (Ve have absorbed p,
ot in “constant”)
-V® =0

At surface: z=h+¢ with ¢ = ¢ (x, y,1)
dg _0¢  ~0¢ 0g

+v. —+v —— wherev_ =v_ (x,y,h+,t
di o ox oy o = Vi (B0 h+ 1)

Linearized equations:

oD

For OSZSh+§: —E+g(2—h)20 —Vz(D:O
dg _o¢

At surface: =h+ —=—=v (x,v,h+_,t

_8®(x,y,h+§,t)+gé,:0

ot



For simplicity, keep only linear terms and assume that
horizontal variation is only along x:

o> 0
For 0<z<h+{: qu):( =+ 2]@()@2,020

oz Ox

Consider and periodic waveform: @D(x,z,t)=Z(z)cos (k(x — ct))

:(—Z—ksz(z) =0

dz
Boundary condition at bottom of tank: v_(x,0,)=0
= d—Z(O) =0 Z(z) = Acosh(kz)

dz



For simplicity, keep only linear terms and assume that
horizontal variation is only along x — continued:

Atsurface: z=h+¢ %—fzvz(x,h+§,t)=—aq)(x’;”rg’t)
0D(x,h+¢ 1) -
> +g¢ =0
0@ h+lr) 00 O'@(nh+dot) 0Pl h+lt)
or o or e
For  ®(x,(h+¢),t) = Acosh(k(n+ ¢ ))cos(k(x—ct))
B 22 sinh(k(h + C)) B
Acosh(k (7 + ¢ ))cos(k(x ct))( ¢’ — gk cosh(k (1 + {))j -

, g sinh(k(h+¢))
~ k cosh(k(h+¢))

— C

VR



For simplicity, keep only linear terms and assume that
horizontal variation is only along x — continued:

, _g sinh(k(h+{) g
© Tk cosh(k(h+ )k tanh(k(’ +)

Assuming § << h: c’ = %tanh(kh) A=

h=20 m

cr / h=10m

I T I | T T T T
100 200 300 400 500



For simplicity, keep only linear terms and assume that
horizontal variation is only along x — continued:

~ %tanh(kh) For 1 >>h, ¢* ~ gh

®(x,z,t) = Acosh(kz)cos(k(x —ct))

L 00(x,h+&,t) k
g ot g

£ (x,t)= © Acosh(kh)sin(k(x - ct))

Note that for A >>h, c° ~ gh

(solutions are consistent with previous analysis)



General problem
mcluc_hng 3 o
non-linearities

h-
| | | - 7/ ”;”n;n
Within fluid : 0<z<h+(
— E;;it) +1v? + g(z—h)=constant (We have absorbed
~-V® =0 P, 1n our constant.)
Atsurface: z=h+( with { = §(x, y,t)
a5 = 8§+Vx8_§+vy8_§ where v, | =vx’y(x,y,h+§,t)

dt ot Ox oy
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