PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF online
Plan for Lecture 34:

Chapter 10 in F & W: Surface waves

1. Water waves in a channel

2. Wave-like solutions; wave speed
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In today’s lecture we will investigate transverse waves at the surface of a channel of water.



Thursday, Nov. 12, 2020
4 PM

10

Britt Lundgren, PhD

Assistant Professor

Department of Physics and Astronomy
UNC Asheville

Asheville, NC

“Shedding Light on the Gaseous Halos of
Galaxies in the Early Universe”

wninbo

Simulations predict that galaxy evolution is regulated by the accretion, expulsion, cooling, and
heating of gas in the halos that surround galaxies out to hundreds of kiloparsecs. Distant quasars
can be used to backlight and detect circumgalactic gas in absorption, and to date, tens of
thousands of intervening absorbers have been detected in large spectroscopic quasar surveys.
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Thursday’s colloquium speaker is a Professor of Physics and Astronomy at UNC Asheville

who will be talking about simulations of astronomical observables to better understand
galaxies for example.



27||Mon, 10/26/2020 |Chap. 9 Mechanics of 3 dimensional fluids #18 10/30/2020
28||Wed, 10/28/2020|Chap. 9 Mechanics of 3 dimensional fluids
29|Fri, 10/30/2020 |Chap. 9 Linearized hydrodynamics equations #19 11/02/2020
30 |Mon, 11/02/2020 |Chap. 9 Linear sound waves #20 11/04/2020
31|Wed, 11/04/2020 |Chap. 9 Linear sound waves Project topic |11/06/2020
32 |Fri, 11/06/2020 |Chap. 9 Sound sources and scattering; Non linear effects
33 |Mon, 11/09/2020 |Chap. 9 Non linear effects in sound waves and shocks  [#21 11/11/2020
»34 ‘Wed, 11/11/2020 |Chap. 10 Surface waves in fluids #22 11/16/2020

35|Fri, 11/13/2020 |Chap. 10 Surface waves in fluids; soliton solutions
36 |Mon, 11/16/2020 |Chap. 11 Heat conduction
37 Wed, 11/18/2020 |Chap. 12 Viscous effects
38 [Fri, 11/20/2020 |(Chap. 13 Elasticity
39 Mon, 11/23/2020 Review

Wed, 11/25/2020 Thanksgiving Holidaya

Fri, 11/27/2020 Thanksgiving Holidaya
40Mon, 11/30/2020 Review

‘Wed, 12/02/2020 Presentations |

Fri, 12/04/2020 Presentations |1
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Update to schedule including a homework dealing with today’s topic.




PHY 711 -- Assignment #22

Nov. 11, 2020
Start reading Chapter 10 in Fetter & Walecka.
1. Work Problem 10.3 at the end of Chapter 10 in Fetter and Walecka.
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Homework problem.



Physics of incompressible fluids and their surfaces

Reference: Chapter 10 of Fetter and Walecka
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Consider a container of water with average height h and
surface h+{(x,y,t); (h €= z, on some of the slides)

Atmospheric pressure is in equilibrium with the surface of water

=pg(h+¢) Here p represents density of water

Po
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Defining the system and the notation.



Euler's equation for incompressible fluid :

dv \Y% .V
dr — Japplied _719 =—8Z _?p
1 op
Assume thatv, <<v_,v, = -g———~=0
p Oz
Dp(x,y,z,t):po+pg(é’(x,y,t)+h_z) within the
water

Horizontal fluid motions (keeping leading terms):

dv,

dr
dv
dt
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Hydrodynamic equations for this case.




Consider a surface ¢(x,t) wave moving in the x-direction in a
channel of width b(x) and height h(x):
Continuity condition in integral form:

ijpdV+_[pV-d =0
dt 1% A b()%(h(x)_}-é'(x,t))f(
[0t b0+ Eonn)de

TN

- Mﬁ
v(x,t) % v(x+dx,t)
-
> Evaluating continuity condition:
7 o0 o o |
b(x)— = ——(h(x)b(x)v(x,t))
ot ox

Considering an increment along the propagation direction including the effects of the
continuity equation.



From continuity condition:

% __ 0 (h(x)b(x)v(x,t))

o ox

N\

R ENERN

[ et b(x)

hix V(X+dx’|t) Example (Problem 10.3):
b(x)=b, h(x)=xx

7o
o¢ 0
"5 = —a((/cx)bov(x, t )) From Newton-Euler equation:
oc ov ﬂ ~ @ - _ 8_4’
E:—K(v+x§j dt ot & ox

Some details for the homework problem which is a special case.



Example continued

o¢ ( avj 0’¢ ov o’
—=—k|v+x—| = —=—K| —+X

Ot ox ot Ot Oxot
o o 5% o 8¢
A - = = Kg| ==+

o °ox o Slar o

It can be shown that a solution can take the form:

2w
g“(x,t):CJo[—\/; cos(ar)
JKg ]
d> 1d

Note that J,(u) satisfies the equation: | —+——+1 |J (1) =0
d u du

2
u

22

2 2 2 2
xd—2+i Jo(u)zw— d—2+li Jo(u):—w—JO(u)
dx~ dx xkg\du" udu Kg
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Therefore, for u =

More details pertaining to the homework problem.
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Example continued

ot’ Oox

2(()\/;

Check:

Jrz

11/11/2020

a%:,(g[a_éﬂ 4’]

:>§’(x,t)=CJo£ﬁ

Ox?

]cos(a)t)

~w’CJ, 20Vx cos(wt)=kg i+x CJ,
ox  ox°
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]cos(a)t)

Continued.
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¢(x,0) 1
0.81

0.61

0.4

0.2

0

-0.2-
-0.4-

11/11/2020

N

C(x,t)=0CJ, [2—60\/;}05(@)

A 3\/;) JO( x)
oo e
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X
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Continued.
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Another example:

NEBN

222N

v(x,t)

S

dx b6y

as _

ot

11/11/2020

[ext)  bx)—>=

Continuity condition:

og 0
ot Ox
v(x+dx,t)

(X —

Special case, where b and h are constant --
For constant b and /:

0

= —h—(v(x,t))

ox
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(h(x)b(x)v(x,t))

A simpler example.
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Example with l/)_%ﬂd h constant -- continued

a5 dg(x,y,t)/dt
V(X7y’t) > ZO-

v(x+dx,y+dy,t)

Continuity condition for flow of incompressible fluid:

0
% +hV-v=0
ot
. . ov
From horizontal flow relations: = =—gV¢
t
: : o°¢ 2
Equation for surface function: P ghV-¢ =0
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Considering the surface height.
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For uniform channel:

Surface wave equation:

2
(th —c’V( =0 c’ = gh

More complete analysis finds:

¢ =Etanh(kh)  where k = 27
k A
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For the simple case, we find the wave equation for the surface height.

In the following

slides, we will find a more complete solution depends on the wavelength the of surface

wave.
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More details: -- recall setup --

and surface h+{(x,y,t)

Consider a container of water with average height h

Po

JUNJRMAMRNMH\N\UWVWJM/*JM/‘
Q:;:.-;LA.A o e NQ\.-"\A oy

e i e

e e P e
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Some details for the more general case.
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Equations describing fluid itself (without boundaries)

Euler's equation for incompressible fluid:

dv ov ov \%
—V=—+V-VV=—+V(%V2)+VX(VXV)Z—VU——p
dt ot ot P
Assume that Vxv=0 (irrotational flow) = v=-VO®

2

:V(—ag+ 1\»2+U+£J:O
ot o,

oD o .
=>-——+5+U+ P _ constant (within the fluid)

ot yo,
For the same system, the continuity condition becomes

V.v=-Vd=0
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Considering the case of irrotational flow.

17



- s
iy e

Within fluid: 0<z<h+¢
0 |,
2 T2 +g(z—h)=constant  (We have absorbed p,
R in “constant”)
-V'®&=0
Atsurface: z=h+( with ¢ =& (x,,1)
d¢ _og¢ = 0g o¢
——=—+4+y ——+vyv —=—  wherev._=v_ (x,v,h+,t
dd o “ox oy = Ve (B4 1)
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Considering the equations within the wave and at the surface.
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Full equations:
Within fluid: 0<z<h+(

_o® +2v* + g(z—h) = constant (We have absorbed p,
ot in “constant”)
V@ =0

Atsurface: z=h+¢ with ¢ = (x,,1)
ac_oc e

——+v —— wherev._ =v_ (x,y,h+,t
o ox oy oy = Ve (%0554 1)

Linearized equations:
For 0<z<h+(: —%f+g(z—h):0 -V =0

6 _9% _

dt at vZ(xﬁth—i_é/’t)

Atsurface: z=h+¢

oD (x, y, h+¢ 1)
- =0
Py +g¢
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Taking the linear limit.
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For simplicity, keep only linear terms and assume that
horizontal variation is only along x:

(& &
For OSZSh'i‘é/I V(D:(g-i‘y]q)(x,Z,f):O

Consider and periodic waveform: ®(x,z,t) = Z(z)cos(k(x—ct))
2
=|—-k*|Z(2)=0
(dz2 ] (2)
Boundary condition at bottom of tank: v_(x,0,7)=0
dz
: R

dz

(0)=0 Z(z) = Acosh(kz)
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Solution for the linear equations.
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For simplicity, keep only linear terms and assume that
horizontal variation is only along x — continued:
oD (x,h+

£,t)

Atsurface: z=h+¢ a—gzvz(x,h+§,t):_
ot Oz

_6CD(x,h+cf,t)+g§:O

sinh(k (h+¢))

Acosh(k(h + g)) Cos(k(x B Ct))(k ¢’ - gk cosh(k(h + é))
. g sinh(k(h+¢))
ok cosh(k(h+¢))

11/11/2020 PHY 711 Fall 2020 -- Lecture 34

=C

ot
~ 82(1)(xa,hz+;’,t)+g ol :_82CD(x,hz+§,t)_gGCD(x,h+§,t):O
t ot ot oz
For  ®(x,(h+¢),t) = Acosh(k(h+¢))cos(k(x —ct))

jo
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An expression for c.
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For simplicity, keep only linear terms and assume that
horizontal variation is only along x — continued:

,_gsinh(k(h+¢) g
© Tk cosh(k(h+ &)k tanh(k(h+¢)

2r
Assuming ¢ <<h: ¢ =& tanh(kh) A=—
k k
=
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Evaluating c as a function of wavelength.
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For simplicity, keep only linear terms and assume that
horizontal variation is only along x — continued:

¢ z%tanh(kh) For A>>h, ¢’ ~ gh

®(x,z,t) = Acosh(kz)cos(k(x —ct))

_100(x,h+¢,t)  k

£(x,t) 2 Acosh(kh)sin(k(x—ct))
ot g

Note that for A >> h, ¢* = gh

(solutions are consistent with previous analysis)
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Form of the surface wave form.
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Within fluid :

constant (We have absorbed
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Introducing the equations beyond the linear approximation that we will cover next time.
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