PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF online

Plan for Lecture 35: Chapter10in F & W

Surface waves

 Summary of linear surface wave
solutions

* Non-linear contributions and soliton
solutions
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This material is covered in Chapter 10 of
your textbook using similar notation.



|ﬁ Mon, 10/26/2020 |Chap. 9 Mechanics of 3 dimensional fluids #18 10/30/2020

28 Wed, 10/28/2020|Chap. 9 Mechanics of 3 dimensional fluids

|E Fri, 10/30/2020 |Chap. 9 Linearized hydrodynamics equations #19 11/02/2020

30[Mon, 11/02/2020 [Chap. 9 |Linear sound waves #20 11/04/2020

31[Wed, 11/04/2020 [Chap. 9 |Linear sound waves Project topic |11/06/2020

32|Fri, 11/06/2020 [Chap. 9 |Sound sources and scattering; Non linear effects)| |

33[Mon, 11/09/2020 [Chap. 9 INon linear effects in sound waves and shocks  |#21 11/11/2020

|ﬁWed, 11/11/2020|Chap. 10 Surface waves in fluids #H22 11/16/2020
» |E Fri. 11/13/2020 ||Chap. 10 Surface waves in fluids; soliton solutions

|ﬁ Mon, 11/16/2020||Chap. 11 Heat conduction

37 [Wed, 11/18/2020 [Chap. 12 Viscous effects | |

|ﬁ|Fri, 11/20/2020 |Chap. 13 |Elasticit},r | |

39[Mon, 11/23/2020 | IReview | |

| [Wed, 11/25/2020 | |Thanksgiving Holidaya | |

|_ Fri, 11/27/2020 Thanksgiving Holidaya

|E Mon, 11/30/2020 Review

|_ Wed, 12/02/2020 Presentations |

| [Fri, 12/04/2020 || |Presentations ||
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Schedule for weekly one-on-one meetings
(EST)

Nick — 11 AM Monday
Tim — 9 AM Tuesday
Gao — 9 PM Tuesday
Jeanette — 11 AM Friday
Derek — 12 PM Friday



Your questions —

From Gao —

1. In what situation, the velocity potential phi in Bernoulli's equation satisfies
d(phi)/d(t)=0"?
2. In visualization, what do the red line and the blue line stand for?

3. Why does zero vertical velocity at the bottom of a pool ensure all odd
derivatives vanish from the Taylor expansion?

From Nick —

| have a conceptual question. My misunderstanding is probably mostly about the setup and
remembering what everything means. But | was wondering why is this true?

Atsurface: z=h+{ dg _9% _ v.(x, v, h+¢,t)
dt ot

In particular, why is

¢
ot
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Consider a container of water with average height h and
surface h+{(x,y,

Atmospheric pressure p, 18 in equilibrium at the surface
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o e e e i o

>
Euler's equation for incompressible fluid:

\% - - e
vy YP_ _yy_ X2 or irrotational flow -- v

applied o -
t inearized tion: V oD + h)+— |=
Continuity equation within the fluid ihearized equation. N gz=h)+—|=

op
5+V- JoA =0 = V.-v=0 t surface: Z:h-l—é/ _E_'_gé'_k_oz
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Keep only linear terms and assume that horizontal variation is

only along x:
o° 0

For 0<z<h+{¢: VO=|—5+— |D(x,z,1)=0
oz~ Ox

Consider and periodic waveform: ®(x,z,t) = Z(z)cos(k(x—ct))
2
= (d—z—ksz(z) =0
dz

Boundary condition at bottom of tank: v_(x,0,¢)=0

= 9% 0)=0 Z(z) = Acosh(kz)
Z
At surface: z=h+¢ %—f:vz(x,h+§,t):—a®(x’;+§’t)
Also: —8q)(x’h+§’t)+g§+&:0
ot o,
2 2
L TO(ehiln) | of  FO(nhiln) | o0(nhtl)

ot* ot ot* Oz



Velocity potential: @ (x,z,7) = Acosh(kz)cos(k(x —ct))
Atsurface:  @(x,(h+¢),t) = Acosh(k(h+ ¢ ))cos(k(x—ct))

sinh(k(h+¢))
cosh(k(h+¢))

Acosh(k(h+ {))cos(k(x—ct))(k2 * — gk

,_gsih(k(h+C) g
k cosh(k(h+¢)) &k

—C

Note that this solution represents a pure plane wave. More
likely, there would be a linear combination of wavevectors k.

Additionally, your text considers the effects of surface
tension. In this lecture, we will focus on the effects of the

non-linear effects of Euler and continuity equations.
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Surface waves in an incompressible fluid
General problem

mcluc_hng 3 o
non-linearities

h-
_ —
Within fluid: 0<z<h+(
ob |,
—E+3v +g(z—h):constant D =D(x,y,z,t)
—V’® =0 v=v(x,y,z,t)=-VD(x, y,z,t)
At surface: z=h+¢ with ¢ = (x,0.t)
a5 = % +vx6—§+v % = _00(x,y,2,1) where v, =v, (x,y,h + g“,t)
dt ot ox 7 Oy Oz " R
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Your question — why is the following true?

At surface: z=h+({ with ¢ =¢(x, y,t)
5 = % +vx%+v 9% = — 0P, ,2,1) where v =v_ (x,y,h + é’,t)
dt ot ox oy Oz _— RO
dg

Note that v_(x,y,h+,t) = A

wave phase (t/T=0.000

From wikipedia
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Your question -- In what situation, the velocity potential phi in
Bernoulli's equation satisfies d(phi)/d(t)=07

Within fluid: 0<z<h+¢
op |,
_EJFEV +g(z—h)=constant O =D(x,y,z,1)
V& =0 v=v(x,y,z,t)=-VO(x, y,z,1)
oD )
One example of — = 0 would be for v =0 and z = /.

Ot



= N

e
e e e e e e & e e e e o

, i Y
A B e A A A A
A B A A A
A B A A A A
R B A A AR A
A B A A A AR
A B A A A A
A B A A A

Bl A B A A

—

> X

Further sitmplifications; assume trivial y - dependence
O =D(x,z,t ¢ =C\x,t
Within fluid : 0<z<h+(

ob dl

At surface: v x,z=h+{,t)=——=
z
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Non-linear effects in surface waves

e e

e
e e e e e e & e e e e o

, Y
A B e A A A A
A B A A A
A B A A A A
R B A A AR A
A B A A A AR
A B A A A A
A B A A A

Rl A B A

> X

ominant non-linear effects = soliton solutions

3n, x—ct
2h

Mo
where ¢ = SN 1+ —
l-n,/h 2h

(x,) =1, sech’ , = constant
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Detailed analysis of non-linear surface waves
[Note that these derivations follow Alexander L. Fetter and

John Dirk Walecka, Theoretical Mechanics of Particles and
Continua (McGraw Hill, 1980), Chapt. 10.]

We assume that we have an incompressible fluid: p = constant
Velocity potential: ®(x,z,t); v(x,z,t)=—-VD(x,z,t¢)

The surface of the fluid is described by z=h+ (x,t). It is
assumed that the fluid is contained in a structure
(lake, river, swimming pool, etc.) with a structureless
bottom defined by the z = 0 plane and filled to an
equilibrium height of z = h.



Defining equations for ®(x,z,t) and £(x,t)
where 0 <z <A+ {(x,¢)
Continuity equation:

O’®D(x,z,t) O0°D(x,z,t)

2 T 2 =

ox 0z

Bernoulli equation (assuming irrotational flow) and gravitation
potential energy

bz 1 K acp(x,z,t)jz ) (8®(x,z,t)jz:| o

V.-v=0 = 0

ot 2|\, ox ooz
U )
A% A%

X z



Boundary conditions on functions —

Zero velocity at bottom of tank:

oD (x,0,7) 0
Oz .
Consistent vertical velocity at water surface
d 0
v.(x,z,0)|__, C"V—V VI +— 5
=il Ot
0
L, 06,
ox Ot
__00(xz0)  00(xz0 0C(n) et

0z Ox Ox Ot |.pe



Analysis assuming water height z is small relative to
variations in the direction of wave motion (x)
Taylor’s expansion about z = O:
oD 22 O°D z O'D z' 0'd
d(x,z,t) = D(x,0 t)+z—(x 0,1 )+7 - (x,0, )+; >3 (x,O,t)+Z! - (x,0,¢)---

Note that the zero vertical velocity at the bottom suggest
that to a good approximation, that all odd derivatives
8”CD vanish from the Taylor expansion. In addition,

the Laplace equation allows us to convert all even
derivatives with respect to z to derivatives with respect to x.

oD z* 0*D z? 0’ 4 0'd
DO(x,z,t) = D(x,0,t) + z—,0,¢) + — ,0.0) + — x,0,1) + — x,0,1)---
( ) = D( ) 5//) 28Zz( )362( )4!624( )

_ POz Fd(xzn)

Ox’ oz*
Modified Taylor's expansion: ®@(x,z,t) ~ D(x,0,1) _%(g C?( x.,0.1 z* ot (I)
X




Question -- Why does zero vertical velocity at the bottom of a
pool ensure all odd derivatives vanish from the Taylor
expansion?

Comment — You are right it is not a rigorous, but an
approximate result.

Example from linear case:  ®(x,z,t) = Acosh(kz)cos(k(x—ct))
0"D(x,z,t)

oz"

In this case all odd derivatives =0

z=0

One can think of other counter examples of functions for
which the first derivative vanishes but the third derivative
does not.



Check linearized equations and their solutions:

Bernoulli equations --
Bernoulli equation evaluated at z =/ + £ (x,1)

oD(x,h,t
- (& )+ g (x,1) =0

Consistent vertical velocity at z =2+ {(x,¢)
_0D(x,z,t) 0L (x,1)
0z Ot |_pe
Using Taylor's expansion results to lowest order
oD (x,h,t 0°D(x,0,¢ ol (x,t oD(x,h,t oD (x,0,t
OOk OO0 SE0nt) Bk | OO0 ey
0z Ox ot Ot Ot

=0

o*D(x,0,1)

52d(x,0,1)
or '

ox*

Decoupled equations: gh

=>linear wave equation with c°=gh



Analysis of non-linear equations --

Bernoulli equation evaluated at surface:

_0D(x,z,t) 1| 0D(x,z,0) ’ oD(x,z,t) i _
: +2K nz) (206 ” <00 =0

z=h+{

Consistency of surface velocity
(2,0 | A(x,z0) 0L (D) (1)
0z Ox Ox ot

=0

z=h+{

Representation of velocity potential from Taylor’s expansion:

2 A2 4
(D()C,Z,l‘)zq)(x,()’t)_z_a ?(X,O,t)+z_a o
2 Ox 41

(X,O,t)---

4
X



Analysis of non-linear equations -- keeping the lowest
order nonlinear terms and include up to 4th order
derivatives in the linear terms. Let ¢@(x,7) = ®(x,0,¢)

Approximate form of Bernoulli equation evaluated at surface: z=h+ ¢

99, (h+{) ¢ L[99 P _
o 2 oon 2(5&) (UHQ ] g6 =0

:>_6¢ h 0'¢ 2(_¢j +g¢ =0.

ot 2 Otox’ Ox
Approximate form of surface velocity expression :
¢) W o'¢ ¢
h+(x, ——=
(( o (%,0) ox ) 3lox* ot

These equations represent non-linear coupling of @(x,¢) and £ (x,¢).



op I 0 ((M i

— | +g¢ =0.
o 2 orox j g6

Coupled equations: —
ox

((h+§(x 2w

X

3 oxt ot

Traveling wave solutions with new notation:
u=x—ct  Pp(x,0)=yw) and ¢(x,1)=n(u)

Note that the wave “speed” ¢ will be consistently
determined

dyw) b’ d’zw) 1(dy@)) B
‘ du 2 du’ 2( du j +gn(u) =0.
d dy))_ I d'z@w)  dn@) _
du ((h () du j 6 du’ du 0
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Integrating and re-arranging coupled equations

2 73 2
LAxw) ch” () | (dz(u)j + an(u) =0,
du 2 du’ 2 du
&, e g kg, g
X cn 2;( (;c) A 2c3f7

d dyw)) I d4Z(U) () _
du ((h+77(u)) du j 6 du du =0

dyw) h d y(u)

= (h+ +cn(u) =0
()= == 5 tenw)
Now we can express dii’ () _ ' in terms of 7:
u
,_ g kg ., g
¢ 677 2c 20377



Integrating and re-arranging coupled equations — continued --
Expressing modified surface velocity equation in terms of n(u):

h2 2 h3
(h+77)(—§77— S - gc3f7j+—n"+cn 0

C 2c 2 6¢
gh) gh’ | g ghj
= |1 -= —=l1+=(n"=0
( czj 30277 c( 2¢” 7

:( ’Zf jn(u)—?n"(u)—%[n(u)]

Note: c¢”=gh+..



Solution of the famous Korteweg-de Vries equation

Modified surface amplitude equation in terms of 7

:( ;ng jn(u)—%n"(u)——[nw)] - 0.

Soliton solution

5 (x,1) =n(x —ct) =1, sech’ [ﬁ xz_hd)

c= \/1 g [1+ j where 77, 1s a constant




Steps to solution
( & jn(u)—hin"( ) =[] -
c’ 3

Let l—h—g—ﬂ

2 77(%)— 1" (u )——[77(%)] =0.
Multiply equation by 77'(u) :>j [ n°(u )——77 (u )——77 (u)j
u

Integrate wrt u and assume solution vanishes for u — oo

TV
2h77 *(u )_?77 (u) 2hn(u) 0

0" () = %nz(u)(m ()

il 2 \/ 33 du > n(u) = T
_ h 3
(11~ 1) cosh’ 1/—77014
4h’



£ (x,t)=n(x—ct)=n, sech’

-10 0 10 20 30 40
X
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Your question -- In visualization, what do the red line and
the blue line stand for?

Two soliton solutions with different amplitudes
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Relationship to “standard” form of Korteweg-de Vries equation

New variables:
18227709 X = if’ and 7= 3 ct |
\ 24 \/ 2h 2n,h

Standard Korteweg-de Vries equation

3
87_7 + 6_2 =0.
Ot ox Ox

Soliton solution:

n(x,t)= b sech’ \/ﬁ (x - Bt) |.

2 2




More details
Modified surface amplitude equation in terms of 77 :

h h’ 3
( j’ )n(u)—?n (u )—E[n(u)]

Mo gh 0n dn 0On dn

Some 1dentities: —=1-—=-; =—Cc—; =—
c ot du ox du
Derivative of surface amplitude equation:
n, 3
——n"—-—nn'=0.
h —7n 3 n" ; nn'=

Expression in terms of x and ¢:

_mon _Kon 3 0n_ .
chot 3of nlox

Expression in terms of X and ¢:
877 o’n

—=0.
Ot ox 8x




Summary

Soliton solution

& (x,1)=n(x—ct) =1, sech{ﬁ Xz—hct]

c= \/1 =g (1+ j where 77, 1s a constant




Photo of canal soliton http://www.ma.hw.ac.uk/solitons/
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http://www.ma.hw.ac.uk/solitons/
http://www.ma.hw.ac.uk/solitons/

John Scott Russell and the solitary wave

Over one hundred and fifty vears ago., while conducting
experiments to determine the most efficient design for canal
boats, a young Scottish engineer named John Scott Russell (1808-
1882) made a remarkable scientific discovery. As he described it
in his "Report on Waves'": (Report of the fourteenth meeting of
the British Association for the Advancement of Science, York,
September 1844 (London 1845), pp 311-390, Plates XLVII-LVII).

tgi https://www.macs.hw.ac.uk/~chris/scott_russell.html

-

"I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass of
water in the channel which it had put in motion; it accumulated round the prow of
the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its course
along the channel apparently without change of form or diminution of speed. I
followed it on horseback, and overtook it still rolling on at a rate of some eight or
nine miles an hour, preserving its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually diminished, and after a chase of
one or two miles I lost it in the windings of the channel. Such, in the month of
August 1834, was my first chance interview with that singular and beautiful
phenomenon which I have called the Wave of Translation".

(Cet passage en francais)

This event took place on the Union Canal at Hermiston, very close to the Riccarton campus of
Heriot-Watt University, Edinburgh.
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