PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF online

Plan for Lecture 35: Chapter10in F & W

Surface waves

« Summary of linear surface wave
solutions

* Non-linear contributions and soliton
solutions
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In this lecture, we will continue analyzing surface waves in water including the special non-
linear soliton solutions.



This material is covered in Chapter 10 of
your textbook using similar notation.




27 Mon, 10/26/2020 [Chap. 9 Mechanics of 3 dimensional fluids #18 10/30/2020
28 |Wed, 10/28/2020|Chap. 9 Mechanics of 3 dimensional fluids

29 |Fri, 10/30/2020 |[Chap. 9 Linearized hydrodynamics equations #19 11/02/2020
30 |Mon, 11/02/2020 |Chap. 9 Linear sound waves #20 11/04/2020
31|(Wed, 11/04/2020|Chap. 9 Linear sound waves Project topic |11/06/2020
32||Fri, 11/06/2020 |Chap. 9 Sound sources and scattering; Non linear effects

33|[Mon, 11/09/2020 |Chap. 9 Non linear effects in sound waves and shocks  |#21 11/11/2020
34/Wed, 11/11/2020 |Chap. 10 Surface waves in fluids #22 11/16/2020
35 |Fri, 11/13/2020 |[Chap. 10 Surface waves in fluids; soliton solutions

36/(Mon, 11/16/2020 |Chap. 11 Heat conduction

37 Wed, 11/18/2020||Chap. 12 Viscous effects

38 |Fri, 11/20/2020 |Chap. 13 Elasticity

39| (Mon, 11/23/2020 Review

Wed, 11/25/2020

Thanksgiving Holidaya

Fri, 11/27/2020

Thanksgiving Holidaya

40 |Mon, 11/30/2020 Review
Wed, 12/02/2020 Presentations |
Fri, 12/04/2020 Presentations ||
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Schedule.




Consider a container of water with average height h and
surface h+{(x,y,t)

Atmospheric pressure p, is in equilibrium at the surface
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Reference system and notation.



dv Vp Vp
- = applied __=_VU__
dt p P

Continuity equation within the fluid

aa—/;+V-(pV)=0 = V.v=0
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Euler's equation for incompressible fluidfor irrotational flow -- v =-V®

Linearized equation: V —aa;‘;+ g(z—h) +21=0
P

Atsurface: z=h+¢ —82+g§+&:0
ot P
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Summarizing the linear analysis.




Keep only linear terms and assume that horizontal variation is
only along x: i )
0 0

For OSZSh'i'é’Z V2®=(g+§]®(x,z,t)20

Consider and periodic waveform: ®(x,z,t) = Z(z)cos(k(x —ct))
2
= (d—z—szZ(z) =0
dz
Boundary condition at bottom of tank: v_(x,0,¢)=0
dZ

=—(0)=0 Z(z) = Acosh(kz)
“ o o0 (x,h+ 1)
At surface: z=h+¢ —=vz(x,h+§,t):—
ot 0z
oD (x,h t
Also: _00(xhte, )+g§+&:o
ot Yo,
O*D(x,h+C ¢ 0 O*D(x,h+C ¢ oD (x,h+{,t
I A W i) AT B G 50 I
ot ot ot 0z
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o

Continue analysis of linear equations.



Velocity potential:  ®(x,z,t) = Acosh(kz)cos (k(x — ct))
At surface:  @(x,(h+¢),1) = Acosh(k(h+¢))cos(k(x—ct))

sinh(k(h +¢ ))
cosh(k(h+¢))

Acosh(k(h + é’)) cos(k(x — ct))(kzc2 — gk

o8 sinh(k(h+¢)) g anh(kh)
k cosh(k(h+¢)) &

Note that this solution represents a pure plane wave. More
likely, there would be a linear combination of wavevectors k.
Additionally, your text considers the effects of surface
tension. In this lecture, we will focus on the effects of the
non-linear effects of Euler and continuity equations.
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Consistent analysis of the wave speed.



Surface waves in an incompressible fluid

General problem
including /

non-linearitie

h
Within fluid: 0<z<h+<{
o |,

—E+5v +g(z—h)=constant O =D(x,y,z,t)
~V® =0 v=v(x,y,z,t)=-VO(x,,z,t)
At surface: z=h+¢ with { = ((x,y,t)

O
d_§=6_§+vX6_§+vy6_§=_M where v, =v,_ (x,y,h+{,t)
dt ot Ox oy 0z il ’ ’
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Returning to the full problem with non-linearities.
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Further simplifications; assume trivial y - dependence

O = D(x,z,¢) ¢ =¢(x,t)

Within fluid : 0<z<h+¢
ob d
At surface : vz(x,Z:h+§',t):——:—§
0z dt
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Specializing to motion along the x direction and surface direction in the z direction.



Non-linear effects in surface waves:

N e Y Y
e e e e e e ™ e e e e e e e ™
h R e b T Ty
A e A A AT A VP ras P e T e T T e e
) e et et et et e e et gl W et et e et ol el el et et ey et el el
z=0

Dominant non-linear effects = soliton solutions
3n, x—ct
h 2h

gh 1o
wherec= [—— =~ h|1+—
= h V& T2

¢ (x,t) =1, sech’ 1, = constant
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Answer that we will find for the soliton solution.
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Detailed analysis of non-linear surface waves
[Note that these derivations follow Alexander L. Fetter and
John Dirk Walecka, Theoretical Mechanics of Particles and
Continua (McGraw Hill, 1980), Chapt. 10.]

We assume that we have an incompressible fluid: p = constant
Velocity potential: ®(x,z,¢); v(x,z,t)=-VD(x,z,t)

The surface of the fluid is described by z=h+{(x,t). It is
assumed that the fluid is contained in a structure
(lake, river, swimming pool, etc.) with a structureless
bottom defined by the z = 0 plane and filled to an
equilibrium height of z = h.
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Summary of assumptions for our analysis.
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Defining equations for ®(x,z,t) and {(x,t)
where 0 <z < h+{(x,1)
Continuity equation:

0’D(x,z,t) 0°D(x,z,t)

2 + 2 -

ox 0z

Bernoulli equation (assuming irrotational flow) and gravitation
potential energy

_a(xnn 1 (acb(x,z,r)jz+(6<D(x,z,t>j2 v g(z—h)=0
ot Ox 0z ¢ o
7 o
V v,

X

Viv=0 = 0
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Working through the equations within water.
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. o0D(x,z,t) N 0D (x,2,t) 05 (x,1) 8((x,z‘)|

Boundary conditions on functions —

Zero velocity at bottom of tank:

od(x,0,t) 0
0z '
Consistent vertical velocity at water surface
d 0
vz(x,z,t)| » :—C: = V-V§+—§
=hedt ot
9, 0
- 9%, %
ox Ot

=0

oz ox ox o |y
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Boundary effects at the bottom of the channel and at the surface.
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Analysis assuming water height z is small relative to
variations in the direction of wave motion (x)
Taylor’s expansion about z = 0:

oD z* O*D 22 o PRGN )
D(x,z,t) = D(x,0,t)+ z—(H0,t) + ———(x,0,¢) + — x,0,0)+— x,0,7)---
(2,0 = D(x.0.0) a/) 2 o 00 3!2;3{( )t 00

Note that the zero vertical velocity at the bottom ensures
that all odd derivatives 0'® (x.0.) vanish from the

Taylor expansion. In addition, the Laplace equation allows

us to convert all even derivatives with respect to z

to derivatives with respect to x. BD(x,2,0) O°D(x,z,0)
= + =

0
ox? oz*
2 A2 4 A4
Modified Taylor's expansion: ®(x,z,¢) ~ D(x,0,£)— - G?(x,o,mz—a qj(x,O,t)---
2 Ox 4! ox
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Here we start a number of steps to analyze the leading terms in the linearities.  In this
case we perform a Taylor’s expansion about z=0 at the bottom of the channel.



Check linearized equations and their solutions:
Bernoulli equations --
Bernoulli equation evaluated at z = 2 + ' (x,7)

SRR L g =0

Consistent vertical velocity at z = A+ (x,1)
0D(x,z,1) 0L (x,1)|

oz o oy

Using Taylor's expansion results to lowest order

=0

o0t L OO0 _ (D) (k) D00

oz ox’ ot ot
: 0*®(x,0,t 0*D(x,0,t
Decoupled equations: ;(;5 1) gh (;xz ).
X

=>linear wave equation with ¢?=gh
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ot

—gé’(x,t)

Checking lowest order (linear) term.
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Analysis of non-linear equations --

Bernoulli equation evaluated at surface:

2 A2 4 A4
z-0°D z' 0D
DO(x,z,t) = DO(x,0,t) —— x,0,1)+— x,0,7)---
(x,2,1) = D(x,0,7) 2axz( ) 4!8)64( )
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oD (x,z,t) 1|(0D(x,z,0)) (0D(x,z,0)Y
Sd al R LD ) =0.
ot +2K o j +( oz ] res(x)
z=h+{
Consistency of surface velocity
_0D(x,z,1) N 0D (x,2,t) 0 (x,t) 8§(x,t)| _0
oz Ox ox ot il

Representation of velocity potential from Taylor’s expansion:

Back to non-linear equations using Taylor’s expansion.
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Analysis of non-linear equations -- keeping the lowest
order nonlinear terms and include up to 4th order
derivatives in the linear terms. Let ¢@(x,7) = ©(x,0,7)

Approximate form of Bernoulli equation evaluated at surface: z =/ + ¢

op, (0 2[(%} ((h+§)—¢J

+ =0
o 2 o ax 8¢

o9 WD, a¢j2
— | +g¢ =0.
o | 2 oon (8x &
Approximate form of surface velocity expression :

[(h+c:( r))af]—%g—f—%f

These equations represent non-linear coupling of @#(x,z) and {(x,?).
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Systematic keeping/limiting terms in non-linearity and in high order derivatives.  The
highlighted equations are the coupled equations that we will analyze.



Coupled equations: —

op W ¢ 1(a¢j2
— | +g¢ =0.
o " 2o Talar) T8

09 Ko o
((h+:( 0 j o,

Traveling wave solutions with new notation:
u=x—ct  Pxt)=yw) and g(x,1)=7n(u)
Note that the wave “speed” ¢ will be consistently
determined

dy(u) ch® d’ (u) dy(u) ’ _
c ’ T 2( i j"‘gﬂ(u)—o-
d;((u)] F iy | dnw

6 du’ du .

—((h +17(u))
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Decoupling the equations.
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Integrating and re- arranging coupled equations

2 13
(Arw) e &) 1 dz@) o
du 2 du’ 2 du
] g h2 m 1 n2 g hzg " g2 2
=—n+— — ~—— —— _——
X AR 2C(;c) ey

d}((u)j h3dﬂc(u) o dnw)
h+ =0.
(( 17(u)) P I
3 43
:»(hm)dl(”) KXW | ey =0
du 6 du
Now we can express M: ' interms of 77:
u
o 8, M &
d cT7 2c 7 26377
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Analysis continued.
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Integrating and re-arranging coupled equations — continued --

Expressing modified surface velocity equation in terms of n(u):

g hg g ) kg
h+ —2pn— " +—=n"+cn=0
( 77)[ CU 2077 20377j 6c77 n

3
= [1-2 —in"—%(Hg—hzj T=
C 3c C 2c
hg n 3 2
=>|1-— () ——n"(u)——|n(u)| =0.
> |1 =" (w) 2h[n( )]

Note: ¢’ =gh+..
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More derivations.
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Solution of the famous Korteweg-de Vries equation

Modified surface amplitude equation in terms of n
hg h 3 >
= 1--= ——n"(u) - — =0.
( . jn(u) A O [17(w)]

Soliton solution

3n, x—ct
x,t) =n(x—ct)=n, sech’| ,[ =2
¢ (x,0)=n( ) =1, (‘/h 2h]
gh Un .
c= ~.Jeh|1+— where 7, is a constant
V- h V8 ( Zhj To
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Finally arriving at the famous equation and the famous soliton solution.
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Steps to solution

( j (u)— 17"(u) ~ —[ﬂ(u)] =0.

hg 770 h "
Let 1- 2=, ﬂ(u) n"(u) - [77( )] =

2h

Integrate wrt # and assume solution vanishes for u — o

Mo 2 h? 2 I 5
— — — — :0
EYR (u) U (u) YA ()

7™ (w) = %nz(u)(% )

47 12 Z\f 33 du :>77(”)=—770
_ h 3
77(770 77) cosh? ‘/—%u
4n’
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Multiply equation by 7'(u) 2; [770 7 (u) - 77'2( )——77 (u )j
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More details.
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¢ (x,t)=n(x—ct)=n, sech’

3& x—ct
2h

11/13/2020

-10 0 10
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30

23

Visualization

23



New variables:

Standard Korteweg-de Vries equation
3

6—7_7 + 6778—7_7 + 8—_73 =0.

ot ox Ox

Soliton solution:

n(x,t)= g sech’ {g(f = ﬂ?)}.
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p=2n, Xx= ii, and ¢ = 3
\2h & \ 2% 25,1

Relationship to “standard” form of Korteweg-de Vries equation

24

Some notational manipulations.
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More details
Modified surface amplitude equation in terms of 7 :

hg )/ 3 2
( —C—zjﬂ(u)—?ﬂ (“)—E[ﬂ(u)] =0.

M _y_8h. Oon__ dn. On_dn
du

Some identities: — = = ;
c ot du Ox

Derivative of surface amplitude equation:

770 ' h2 m 3 '
Loy —pm—Znn'=0.
P n 3 n h7777

Expression in terms of x and #:

chor 3¢ K ox
Expression in terms of x and 7 :

3
8_77+6776_77+8_77

— =0.
ot o&x X
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More details.
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Summary

Soliton solution

3n, x—ct
x,t)=n(x—ct) =n, sech’| ,[—2
¢(x,1)=n( )="1, (‘/h 2h}
gh un :
c= [—2——~w~.gh|l+— where 1, is a constant
\i—p /i V& ( 2hj o
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Summary.
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Photo of canal soliton http://www.ma.hw.ac.uk/solitons/
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Historic realization of the soliton wave in a channel.
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John Scott Russell and the solitary wave

Over one hundred and fifty years ago, while conducting
experiments to determine the most efficient design for canal
boats, a young Scottish engineer named John Scott Russell (1808-
1882) made a remarkable scientific discovery. As he described it
in his "Report on Waves": (Report of the fourteenth meeting of
the British Association for the Advancement of Science, York,
September 1844 (London 1845), pp 311-390, Plates XLVII-LVII).

mi https://www.macs.hw.ac.uk/~chris/scott russell.html

I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass of
water in the channel which it had put in motion; it accumulated round the prow of
the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its course
along the channel apparently without change of form or diminution of speed. I
followed it on horseback, and overtook it still rolling on at a rate of some eight or
nine miles an hour, preserving its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually diminished, and after a chase of
one or two miles I lost it in the windings of the channel. Such, in the month of
August 1834, was my first chance interview with that singular and beautiful
phenomenon which I have called the Wave of Translation".

(Cet passage en francais)

This event took place on the Union Canal at Hermiston, very close to the Riccarton campus of
Heriot-Watt University, Edinburgh.
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First observer of the soliton phenomenon.

28



