PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF online
Discussion for Lecture 36: Chap. 11 in F&W
Heat conduction

1. Basic equations

2. Boundary value problems
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29 |Fri, 10/30/2020 (Chap. 9 Linearized hydrodynamics equations #19 11/02/2020
30 Mon, 11/02/2020 |Chap. 9 Linear sound waves #20 11/04/2020
EWecl, 11/04/2020 |Chap. 9 Linear sound waves Project topic [11/06/2020
32 Fri, 11/06/2020 |Chap. 9 Sound sources and scattering; Non linear effects

33 Mon, 11/09/2020 (Chap. 9 Non linear effects in sound waves and shocks  |[#21 11/11/2020
ﬁWe-:l, 11/11/2020 \Chap. 10 Surface waves in fluids #22 11/16/2020
35 Fri, 11/13/2020 |Chap. 10 Surface waves in fluids; soliton solutions

-ﬁ Mon, 11/16/2020 (Chap. 11 Heat conduction

37 |Wed, 11/18/2020 (Chap. 12 Viscous effects

38 |Fri, 11/20/2020 |Chap. 13 Elasticity

39 Mon, 11/23/2020 Review

- \Wed, 11/25/2020 Thanksgiving Holidaya
" |Fri, 11/27/2020 Thanksgiving Holidaya
40 Mon, 11/30/2020 Review

_Wecl, 12/02/2020 Presentations |

] Fri, 12/04/2020 Presentations |l
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Schedule for weekly one-on-one meetings
(EST)

Nick — 11 AM Monday

Tim — 9 AM Tuesday — Possibly Wed. at 11 AM?
Gao — 9 PM Tuesday

Jeanette — 11 AM Friday

Derek — 12 PM Friday



Your questions —

From Nick —

1. Can you explain the erf function. I've never really
understood it. I'm not sure |'ve actually ever had someone
explain it. I've just seen it appear in places before.

From Gao —

1. In the real world, what system has a temperature
distribution such as discussed for the standing wave
solutions.

2. Does this expression say the temperature transmits

along the Z axis?

T(z,t)=Te"" cos[g — a)r)



Conduction of heat

Jn

Enthalpy of a system at constant pressure p
non uniform temperature 7'(r,?)

mass density p and heat capacity c,

H = [ pe, (T (r.0) =T, Jd’r + H,(T;. p)
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Note that in this treatment we are considering a system at
constant pressure p

Notation: Heat added to system - dQ =1TdS
External work done on system  --dW =—pdV
Internal energy —-dE =dQ +dW =TdS — pdV
Entropy - dS
Enthalpy —-dH =d(E+ pV)=1dS +Vdp

Heat capacity at constant pressure:

(3] ()8
» \dr), \or), \oT),
szjpcpd3r

More generally, note that ¢, can depend on T; we are
assuming that dependence to be trivial.




Conduction of heat -- continued
H = [ pe, (T(r.0) =T, Jd*r + Hy(T,. p)
4

Time rate of change of enthapy:

dH oT (r,t
E:}[pcp o —Ijh a’A+j‘,0qa’3
heat flux heat source
GT(r,t)__v., |
PC, = Jn T P4

ot
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Conduction of heat -- continued

oT (r,t) , ,
Empirically: j, =—k,VT (r,t)
oT (r,t ]
_ Tet) VT (1) + -
ot c,
K= ki thermal diffusivity

pc,
https://www.engineersedge.com/heat_transfer/thermal_diffusivity table 13953.htm
Typical values (m?/s)
Air 2x10°
Water  1x10~
Copper 1x104



https://www.engineersedge.com/heat_transfer/thermal_diffusivity_table_13953.htm

Boundary value problems for heat conduction

Ty
C
b
— X
a .

5T(l‘,t) _szT(r’t):i

Ot c,
Without source term: 8T(g:,t) —kV°T (r,t ) =0

Example with boundary values:T (0, y,z,¢) =T (a,y,z,t) =T,
9
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Have you ever encountered the following equation in other
contexts and if so where?

il g’t) T (1,0 =0




Boundary value problems for heat conduction

oT
(1) 2T (1) =0 To
ot
T(O,y,z,t)zT(a,y,z,t)zﬂ) b
8T(x,0,z,t) B 8T(x,b,z,t) P a X
Gy 5)/ — Assuming thermally
GT(x,y,O,l‘) ('9T(x,y,c,t) insulated boundaries
Oz - Oz B
Separation of varables: T(x, y,z,t)=T, + X(x)Y(v)Z(z)e "
d’* X . dY .. d’Z ,
Let =—a X =—f[7Y =—yZ
: dx’ “ dy’ o dz’ 4

:>—/1+K(a2+,82+7/2):0



Boundary value problems for heat conduction

T(xy.20) =T, + X (x)Y (y)Z(2)e ™ B

X(0)=x(a)=0 :X(x):sin(mzx) )
dY(O)_dY(b)_ B nry )
0 = a0 =0 :>Y(y)—cos( by/
dZ(O) _ dZ(C) _0 N Z(z) _ Cos(pﬂz\
dz dz c )
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Boundary value problems for heat conduction

Full solution:

T(x,y,z,t) =1, +ZCnmp sin(mﬂxjcos(nzyjcos(pﬂzjeﬂ’””"t

nmp a C
2 2 2
=\ (%) + (57 +(2)
P a b C
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Full solution:

mnp

T(x,y,z,t):To +ZCnmp Sin(mﬂxjcos(nzyjcos(pﬂz)ei t

nmp

a

C

At t=0,z=0
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Full solution: =

T(x,y,z,t):TOnLZC sin(mﬂx cos(nzyjcos(pﬂzje%’”’”’t

Time evolution,
nmp=100

at z=0

11/16/2020

C

nmp

0.6—

0.6 04

X

=
b ]
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Your question — What real system could have such a
temperature distribution

Comment — While one can imagine that the boundary
conditions can be readily realized, the single normal mode
patterns are much harder. On the other hand, we see that
the lowest values of lambda have the longest time
constants.



Here we assume that the

Oscillatory thermal behavior . o
spatial variation is along z

T(z=0,t)=%R Te_“‘”

"

Z—>

2
8_T:K‘a{ Let f(Z):Aeaz
at 62 ; 2 _ lC{) _ 3in/2 0
Assume: T'(z,t) = m(f(z)e—m)t) a=-—=e" —
d’f N
(wiw) f=K—3 (1-1) ==

11/16/2020 PHY 711 Fall 2020 -- Lecture 36 17



Oscillatory thermal behavior -- continued

T'(z=0,t) =R Te_m’t

"\

T(Z t) 9% +(1 1)2/58—1601‘

2K
0,

where O =

Physical solution:  T(z,t)=T,e""’ cos(g — a)tj
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T(z,t)=Te"" cos(é — ot

t=0.

J

N
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Your question — Does this expression say the temperature
transmits along the z axis?

Comment — In this case, our setup approximates trivial
variation in the x-y plane so that all variation is along z.
The spatial form along z with oscillating boundary condition
at z=0 is a result of the form of the heat equation.



Initial value problem in an infinite domain; Fourier transform
oT (r,?)

ot
T(r,0)=f(r)

~~

Let: T(q,t)= Id3re_iq'rT(r,t)
fla)=[d’re ™ f(r)

~ "~~~/

= T(q.0)= f(q)

L @) (g

ot

T(q,t)=T(q,0)e ™"

—&V?T(r,t)=0




Initial value problem in an infinite domain; Fourier transform

1
(27)

T(q,7)= jd3re_iq'rT(r,t) = T(r,t)= jd3qeiq'rf(q,t)

f(q,t) = f(q,O)e_’“]zt

1
(27)

T(q.0)=f(a)=]dre™" f(r)

T(r,t)= jd%'G(r—r',t)T(r',O)

T(r,t)= J. d>qe" T (q,O)e_’(qzt

1
(27)

with G(r -1, t) J' d> qeiq-(r—r')e—rcqzt



Initial value problem in an infinite domain; Fourier transform

T(r,t)= jd%'G(r—r',t)T(r',O)

with G(r—r',¢)

21 )3 J‘d3qeiq-(r—r')e—xq2t
7T

(

1 -1’
G(l‘—r',t)z (47?14)3/2 e T




Heat equation in half-space

oT(r,?)
Ot
T(r,t)= T(z,t) with initial and boundary values:

I'(z,t)=0 forz<0
7(z,0)0=0 forz>0
7(0,0)=1, fort=0

—&V°T(r,t)=0

Solution: 7 =T, erfc(

where erfc E ——
Jelera



Your question -- Can you explain the erf function. I've never
really understood it. I'm not sure I've actually ever had
someone explain it. I've just seen it appear in places

before. https://dImf.nist.qov/7
§7.2(i) Error Functions @
7.2.1 fr— 2 z —t* g
L. erf z = E e t, @
/.2.2 erfcz—\/—J dt =1—erfz, @

IL|||

. \'x

3 -2 -1 0 1 2 3
Figure 7.3.1: Complementary error functions erfc x and erfc (101:),
—3<x=3. &k
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https://dlmf.nist.gov/7

Heat equation in half-space -- continued
2
8T(Z,t)_K8 T(z,t) 0

ot 07
Solution: 7T =T, erfci j

N

where erfc E e du
=l w
Note that d erfc(x) = d 2 e du = —ie
dx dx 7~ \/;




J

z

NI

1, erfc(

T —

10



Temperature profile

0.8-
0.6-
0.4-
0.2-
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