PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF online

Plan for Lecture 37: Chap.12inF & W

Viscous fluids
1. Viscous stress tensor
2. Navier-Stokes equation

3. Example for incompressible fluid —
Stokes “law”
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In this lecture, we will consider some effects of viscosity on the motion of fluids, following
Chapter 12 of your textbook.
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Mon, 10/26/2020 |Chap. 9 Mechanics of 3 dimensional fluids #18 10/30/2020
Wed, 10/28/2020||Chap. 9 Mechanics of 3 dimensional fluids

Fri, 10/30/2020 |Chap. 9 Linearized hydrodynamics equations #19 11/02/2020
Mon, 11/02/2020 |Chap. 9 Linear sound waves #20 11/04/2020
Wed, 11/04/2020||Chap. 9 Linear sound waves Project topic [11/06/2020
Fri, 11/06/2020 |Chap. 9 Sound sources and scattering; Non linear effects

Mon, 11/09/2020 |Chap. 9 Non linear effects in sound waves and shocks | #21 11/11/2020
Wed, 11/11/2020 |Chap. 10 Surface waves in fluids #22 11/16/2020
Fri, 11/13/2020 |Chap. 10 Surface waves in fluids; soliton solutions

Mon, 11/16/2020 |Chap. 11 Heat conduction

Wed, 11/18/2020 (Chap. 12 Viscous effects

Fri, 11/20/2020 ||Chap. 13 Elasticity

Mon, 11/23/2020 Review

" |Wed, 11/25/2020

-
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Thanksgiving Holidaya

Fri, 11/27/2020

'Thanksgiving Holidaya

Mon, 11/30/2020 Review
Wed, 12/02/2020 Presentations |
Fri, 12/04/2020 Presentations Il
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Martha-Elizabeth Baylor, PhD

Associate Professor of Physics
Chair of Physics and Astronomy
Carleton College

Northfield, MN

“A Dynamical System Approach to the Cocktail
Party Problem: Using Optics Instead of your Brain
to Separate Signals”

wninbo

Have you ever been at a noisy party and still been able to pick out what the
person in front of you is saying? If so, then you are intimately aware of the fact
that your brain is able to solve the cocktail party problem. How does your brain
separate one signal from a mixture of signals? I have no idea, but I will tell you
about a half optical, half electronic system that is able to mimic that behavior.
The optoelectronic system uses dynamic holography combined with non-linear
electro-optics in a feedback loop to solve the cocktail party problem. By
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The week’s colloquium speaker has an intriguing topic --



Equations for motion of non-viscous fluid
Newton-Euler equation of motion:
ov
,OE‘FP(V'V)V = pfapplied _Vp
Continuity equation:

%—'[;+V-(pv):0 =3 v(aa—/;+v-(pv)j:0

Add the two equations:

ov 0
p5+8—/t)v+p(v~V)v+Vv-(pV) = Pt ppiica = VD
\ J
3 8( pvlv)
8( ,OV) Z—f
ot = o
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Reviewing the fluid equations we have discussed previously, combining Newton’s equations
with the continuity equation to find a new convenient form.



Equations for motion of non-viscous fluid -- continued

Newton-Euler equation in terms of fluid momentum:

3 PV;V
21 ( 8x ) = pf applied -Vp
= j

30| pv;v
+ Z (ax ) + vp pfapplled

J=1 J

Fluid momentum:  pv

Stress tensor: T, = pvyv, + pd,

* component of Newton-Euler equation:

o(pv.) oT;
ot +;6x =Pl
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Here we recognize terms that have the units of force/area and can be described as a stress
tensor Tij.



Now consider the effects of viscosity
In terms of stress tensor:
T Tldeal

ideal ideal
™ =pvy,+po, =T,

TVISCOUS

As an example of a viscous effect, consider --

Newton's "law" of viscosity

F ov,

x_

A f@y y

material dependent parameter
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The next step is to imagine that the additional effects of viscosity should/can be

represented as a viscous stress tensor.

The example of sheer force suggests that the

viscous stress tensor involves derivatives of the velocity of the fluid.



Effects of viscosity
Argue that viscosity is due to shear forces in a fluid of the form:

Fdrag _ 77 8\/

X

4 oy
Formulate viscosity stress tensor with traceless and diagonal terms:

viscous a a 2
T, :_n(i—i_l_gé‘kl(v'V))_é/é‘kl(v'v)

ox, Ox, '

viscosity bulk viscosity

Total stress tensor: T}, = T,/ + T,/***
rZ;iIdeal = pvkvl + pé‘k!
i ov ov, 2
T Vviscous _ _k+_l__ V-v)l—s (Vv
’ n(ﬁx; ox, 3 u( )J ¢4 (V-v)
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Imagining the most general form of the viscous tensor, we consider all derivatives of all
components of fluid velocity, separating out the terms with zero trace, with the remaining
terms proportional to the divergence of the velocity and representing the “bulk” viscosity.



Effects of viscosity -- continued

Incorporating generalized stress tensor into Newton-Euler equations
pv i _
pv 23: (pvlvl) op .\ iazv" +(§+1 ji azv/.

fi—= N i )
o Ox, ox, ‘3 8xf 3" )75 ox,0x;

Continuity equation

8t = 1 8x

Vector form (Navier-Stokes equation)

ﬁ+(V'V) f—le+nV vV+— (§+ 77) (V-V)

o .. P 3

Continuity equation

0

PLy. (pv)=0
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Now we can write the fluid equations with the full stress tensor. The continuity equation
still applies. The so-called Navier-Stokes equation summarizes the expected behavior of
fluids in terms of the material dependent viscosity parameters eta and zera.



Newton-Euler equations for viscous fluids
Navier-Stokes equation

A (v-V)v=f —le + 1y +l(§ +177)V(V V)

ot p p P 3

Continuity condition

ap
L iv. =0
= TV (pv)

Typical viscosities at 20° C and 1 atm:

| Fluid | np(m¥s) | n(Pas) |

Water 1.00 x 106 1x 103

Air 14.9 x 10 0.018 x 108

Ethyl alcohol 1.52x 10° 1.2 x 103

Glycerine 1183 x 10 1490 x 103
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Here is a list of some typical values of the viscosity parameter eta.



Example — steady flow of an incompressible fluid in a long

pipe with a circular cross section of radius R
Navier-Stokes equation

%-{—(V'V)V=f—%Vp+%V2V+%(§+§T7JV(V'V)

Continuity condition

Z—f—kV-(pV)zO Note that Vx(Vxv)=V(V-v)-V’v
Incompressible fluid = V-v=0
Steady flow v =0
ot
Irrotational flow = Vxv=0

No applied force = =0

Neglect non-linear terms => V(vz) =0
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Example of a measurement of viscosity for irrotational flow.
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Navier-Stokes equation becomes:

1
0=——Vp+Lvy
P P
Assume that v(r,t)=v,(r)Z
dp ) .
o nVv_(r) (independent of z)
/4
Suppose that P = _4p
0z
= Vzvz (r)= _A_p
nL
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Example — steady flow of an incompressible fluid in a long
pipe with a circular cross section of radius R -- continued

L (uniform pressure gradient)

Continued analysis of simple viscous flowl
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Example — steady flow of an incompressible fluid in a long
pipe with a circular cross section of radius R -- continued

Vi ()=-2

nL
lirdvz(r)__Ap h
rdr dr nL

2 —L
v (7)== L Cin(r) + C,
4nL
i _

=C =0 vZ(R)zoz—Aplz +C,

v,(r)= 4A77—P}J(R2 - rz)
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Solving for the velocity profile.
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Example — steady flow of an incompressible fluid in a long
pipe with a circular cross section of radius R -- continued

v.(r)= 4A—p(R2 — rz)

nL
Mass flow rate through the pipe:
4
dt 0 8nL

Poiseuille formula;
=>Method for measuring n
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This analysis is useful for measuring eta.

13



Example — steady flow of an incompressible fluid in a long
tube with a circular cross section of outer radius R and inner
radius xR

Apr?
v.(r)=-— +C In(r)+C
z() 477L 1 () 2

2
v (R)=0=-2PR )+ C
z 477L 1 2

Apx’R?

V.(kR)=0=~-
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+C In(xR) +C,
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Another related system with a cylindrical shell.
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Example — steady flow of an incompressible fluid in a long
tube with a circular cross section of outer radius R and inner
radius kR -- continued

Solving for C, and C, :

,_ V(r)zApRz 1_(1)2_1—,(2111(1)
: 4AnL R Inx R

Mass flow rate through the pipe:

dM R
— =2 [ rdrv.(r) =

ApprR* 1— i+ (1_’(2)2

8nL Inx
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The final result again can be used to measure the viscosity.
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More discussion of viscous effects in incompressible fluids

Stokes' analysis of viscous drag on a sphere of radius R

moving at speed u# in medium with viscosity 77 :

F, = —77(67rRu)
Plan:
1. Consider the general effects of viscosity on fluid
equations

2. Consider the solution to the linearized equations
for the case of steady-state flow of a sphere of
radius R

3. Infer the drag force needed to maintain the
steady-state flow
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Changing to an analysis of viscous flow as a drag force.
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Newton-Euler equation for incompressible fluid,

modified by viscous contribution (Navier-Stokes equation):

%-I—(V'V)V =f e VP gy,
rop

v  Kinematic viscosity

Typical kinematic viscosities at 20° C and 1 atm:

| Fluid | v(m¥s) |
Water 1.00 x 106
Air 14.9 x 10°
Ethyl alcohol 1.52x 10®
Glycerine 1183 x 10°®
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In this case, we will consider an incompressible fluid in which case eta/rho is the important
parameter.



Stokes' analysis of viscous drag on a sphere of radius R

moving at speed u in medium with viscosity 77 :
F, =-n(67Ru)

Effects of drag force on motion of

particle of mass m with constant force F :

F—67zR77u=m% with u(0)=0

_67[R77t
:u(t)=61; Ll—e " J
7
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Before deriving Stokes law of viscous drag, it is interesting to recall its effects.

18



Effects of drag force on motion of

particle of mass m with constant force F':

du :
F—6Rmu=m— with u(0)=0
dt
_67Rn
=u(t)= l—e ™
671Rn
u 06
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Objects moving in the presence of the Stokes viscous drag, tend to read a steady “termina

velocity.

III
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Effects of drag force on motion of particle of mass m
with an initial velocity with #(0) = U, and no external force

—67Rnu = m@
dt
_672'R77t

=ut)=Ue "

0 1 2 3 a 5

t
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Or the velocity decays to zero.

20



In previous discussions without viscosity, the velocity near the sphere is not necessarily

Zero.

Recall: PHY 711 -- Assignment #18

Oct. 26, 2020

Determine the form of the velocity potential for an
incompressible fluid representing uniform velocity in the z
direction at large distances from a spherical obstruction
of radius a. Find the form of the velocity potential and the
velocity field for all r > a. Assume that for r = a, the
velocity in the radial direction is 0 but the velocity in the
azimuthal direction is not necessarily 0.

VD=0

CD(r,@)z —V,| r+

11/18/2020

3

a
— |cos 0
2r
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How will this be affected in the presence of viscosity?
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Newton-Euler equation for incompressible fluid,

modified by viscous contribution (Navier-Stokes equation):

@+ (V-V)v=~_ _¥p + Ty
ot p P

Continuity equation: V-v =0

Assume steady state: = ’ =0

Assume non-linear effects small

Initially setf, .., =0;
= Vp=nV’v
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Here we keep the dominant terms, finding a relationship between the pressure and the

velocity.

22



Vp =nViv

Take curl of both sides of equation:
Vx(Vp)zOz?]Vz(va)

Assume (with a little insight from Landau):
V=V><(V><f(r)u)+u

where  f(r)—=—0

Note that:

Vx(VxA)=V(V-A)-V’A

11/18/2020 PHY 711 Fall 2020 -- Lecture 37 23

This analysis follows the treatment of Landau and Lifshitz.
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Digression
Some comment on assumption: v =V x (V X f(r)u) +u
Vx(VxA)=V(V-A)-V’A
Here A = f(r)u
va=Vx(Vx(VxA))=—Vx(V2A)

Alsonote: Vp=nV’v
= VxVp=VxypV’v  or V*(Vxv)=0
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Deducing the form of the velocity

24



V:Vx(fo(r)u)+u

u=uz
Vx(Vx f(r)2)=V(V-f(r)z)-V>f(r)z
Vxv=0 :>V2(VXV)=O

VHVx f("Nz)=0 =V (Vf(r)xz)=0

f(r):Clrz+Czr+C3+g
r

v, :”0059(1—2£j=u00s0(1—4q -

rdr
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2,

r

2
rommusing( 14 LA ) ingf 146, -G

= V*'f(r)=0

+2C4j

3
r

3
r r
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Here we find the most general form of the equation that satisfies the differential equation.
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Some details:

f(r)=Cr* +C,r+C, +Q
r
Vzu(Vx(fo(r)i)Jri)
=u(V(V (f(r)2))-V2f(ryz+ z)
Note that: Z = cos&f —sin 60
V= u(V(%cosej—(Vz (f(@)—l)(cos@f' —sinHé)j
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Some details.



v, :ucose[l——il :uc030[1—4C1 _26 2?“)
r dr r v
2
ve:—usme[l—%—lij——usm¢9(1—4Cl—Q—Cg‘j
r° rdr roor
To satisfy v(r > o) =u: =C, =0
To satisfy v(R)=0 solve for C,,C,
3
v.=ucost 1—3—R+R—3
2r 2r
3
v, =—usin@ l—ﬁ—R—3
4r 4r
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Assume that the velocity achieves steady flue far from the sphere and is zero on the sphere

boundary.

27



3
v, :uc059(1—3—R+R—J

2r  2r°

3

v, =-usin@ 1—3—R—R—3
4r 4r

Determining pressure :
R
Vp = 77V2V = —UV(M CcOS 9(%)}
r

)
= p=p,—nucost —
2r
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Finding all the constants and solving for the pressure .



p=p, —nucosf SR
’ 2r°

Corresponds to:

F,cos0 =(p(R)— p,)4nR’

= F, =—-nu(6zR)
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Deducing the drag force from the solution to the differential equation.
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