PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM  MWF Online or (occasionally)
in Olin 103

Plan for Lecture 6: -- Chapter 2 of F & W

1. Physics analyzed in accelerated coordinate frames
a. Linear acceleration
b. Angular acceleration

c. Foucault pendulum
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In this lecture, we will briefly discuss the analysis of physics within accelerated reference
frames as presented in Chapter 2 of your textbook.



Course schedule
(Preliminary schedule - subject to frequent adjustment.)

[ |pate [F&W Reading | Topic [Assignment Due

[|[Wed, 8/26/2020|Chap. 1 [Infroduction B [8/31/2020

[2|[Fri, 8/28/2020 [[Chap. 1 [Scattering theory #2 [9/02/2020

[3[Mon, 8/31/2020/[Chap_ 1 [Scattering theory #3 [9/04/2020

[4|Wed, 9/02/2020 [Chap. 1 [Scattering theory | |

[6/[Fri, 9/04/2020 |[Chap. 1 [Scattering theory [ [9/09/2020
|:> [6[Mon, 9/07/2020/[Chap. 2 [Non-inertial coordinate systems|| |

[7|[Wed, 9/09/2020[Chap_3 [Calculus of Variation | |
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We plan only one lecture on this topic, but it will come up again later in the course.
Wednesday, we will jump into the topic of calculus of variation in order to develop
mathematical tools that form the backbone of the study of mechanics among other
applications.



Physical laws as described in non-inertial coordinate
systems

» Newton’s laws are formulated in an inertial frame of
reference {éq }

» For some problems, it is convenient to transform the
the equations into a non-inertial coordinate system

A0

A0
e3 e3
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By “inertial” frame of reference, we mean a reference frame that is either stationary or is
moving at constant velocity. A non-inertial frame of reference is the opposite.



Comparison of analysis in “inertial frame” versus “non-
inertial frame”

Denote by €/ an fixed coordinate system in 3 orthogonal directions

Denote by e, a moving coordinate system in 3 orthogonal directions

dv o dVl, &dV. de,
(dr J‘Z R e RN

Define: (
within the e frame.

2 2L 5
= | — = — + Vl i
dt inertial dt body i=1 dt
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The first question is how analyze quantities such as a vector V in the two frames of
reference. The vector V may vary in time and its components



Properties of the frame motion (rotation only):

A dé =dQe,
dQ e, Y
1 Hee d@=doi de, = —dQe,
dQ . =de=dQxe
O=——X
dt de dQ .
—=—Xe
dt dt
ﬂd[& @:(I)Xé
>4 dt

Note that the coordinate €,

is pointing out of the screen.
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Here omega is a vector whose magnitude is the time rate of change of rotation of the

coordinate frame and whose direction is pointing along the axis of rotation (in this case the
X-axis.



Properties of the frame motion (rotation only):

ao e,
A
dé R R de dQ . de n
© de=dQxe —=——xe —=@xe
dt dt dt
e dQ.
V> e

y
Rotation about x-axis:

o ) e )

R v OB A

9/07/2020 PHY 711 Fall 2020 -- Lecture 6 6

Here we “derivate” the cross product relation using the expression for finite rotation and
then expanding to infinitesimal angle dOmega.



Properties of the frame motion (rotation only):

Rotation about x-axis:

de.) \-dQ 0

e

z

9/07/2020 PHY 711 Fall 2020 -- Lecture 6

dQ e,
A
de R . de dQ . de
& de=dQQxe —=—xe =
dt dt dt
e dQ.
V> ey

de 0 dQ)le R R .
o= Y= -dQee, +dQe e, =dOxxe

Summary of previous results.




Properties of the frame motion (rotation only) -- continued

3 A
(55 1%
dt inertial dt body i=1 d t

)
Las =[=| +oxV
dt inertial dt body

Effects on acceleration (rotation only):

( d dvj ( d j (dvj
L%y =|| = +oOx K| — +oxV
dt dt inertial dt body dt body

2 2
(d Yj =[d Yj +2mx(ﬂj +d—m><V+m><(oxV
dt inertial dt body dt body dt
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Having established how to analyze the first time derivative, we apply the time derivative to
the result in order to analyze the second time derivative (acceleration).



Application of Newton’s laws in a coordinate system which
has an angular velocity ® and linear acceleration a

Newton’s laws;

2
dt inertial
d’r d’r dr do
m| —- =mlat+|—| +20x|—| +—xr+oxoxr|=F
a ) .. ar ), . dt ),,, dt
mnertia oay 04y

Rearranging to find the effective acceleration within the non-inertial frame --

[aﬂrJ (drj do
m| ——- =F,  —ma -2mox| — —M——XI —mOX®Xr
dat ), art Jyoa, dt

) 1

Coriolis Centrifugal
force force

Let r denote the position of particle of mass m:

9/07/2020
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The highlighted terms are often called “fictictious” forces.




Motion on the surface of the Earth:

® = 2z ~7.3x10rad/s
T

F, = Mm p

7 1
Earth’s gravity

Support
force

—w!‘(wll)

Main contributions:

d’r GM,m, ., dr do
m| —- =— —r+F —2mmx| — —mM—Xr—mmOxXOXr
dt earth earth dt

7
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Considering now our case, standing or sitting on the surface of the rotating earth
(neglecting other details like orbiting the sun). F’is the support force meaning the floor on
which we are standing/sitting and its support due to earth’s crust.



Non-inertial effects on effective gravitational “constant”
d’r GMm, dr do
m — =————r+F-2mox| — —M——XTF —mMOXOXT
dt earth r earth dt
2
For (ﬂj =0 and d—: =0,
dt earth dt earth
GM m . _, /]
0=——-—r+F -moxoxr a,%
' vy
Fv: _mg ,:}'_//. _I Sy V/‘
" e
:>g=_G2€r—0)><0)><r éi//'/
r r=R,
GM \
:(_ - *+®’R, sin’ ij+sin¢900sz9w2ReO Cexiexn
1‘ 0.03 m/s?
9.80 m/s?
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Some details.
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Foucault pendulum  http://www.si.edu/Encyclopedia_Sl/nmah/pendulum.htm

The Foucault pendulum was displayed for many years in the Smithsonian's
National Museum of American History. It is named for the French physicist
Jean Foucault who first used it in 1851 to demonstrate the rotation of the earth.
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A very interesting example designed to show the effects of the earth’s rotation.
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Equation of motion on Earth’s surface

d’r GMm . dr de
ml 2= =————T1+F-2mox| — —M——XT —MOXO XY
earth r carth dt

O ~-@sin K+ wcos bz
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Foucault pendulum continued — keeping leading terms:

| =

1 (der GM.m d
m| —- ~—
earth

> s r+F'—2m(o><(—rj
dt Re dt earth

F'~ -T'siny cos¢gx — T'siny sin gy + T cosyz
o~ —@sin K + wcos bz
d : : A VO
mx(d—:j ~ (- ycos 6k + (xcos @+ zsin O)f — jsin 6z)
earth
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Analyzing the pendulum motion in the given geometry.
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Foucault pendulum continued — keeping leading terms:

d’r GM,m . dr
m — ~————Tr+F-2mox| — 2
dt earth Re dt earth

mx ~ —T siny cos @ + 2mwy cos @

my ~ —T siny sing — 2ma(xcos 0 + zsin6)

S

mz = T cosy —mg + 2mmysin @ l

l

Further approximation :

v<<l; Z=0; T~mg

mX =~ —mg siny cos @+ 2mawy cos 6
my = —mg siny sin ¢ — 2max cos @
Alsonote that :

x =~ [siny cos @

y = {siny sin ¢
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Simplifying the equations for the dominant terms.
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Foucault pendulum continued — coupled equations:

kz—§x+2wcos0jz

j}z—%y—Za)coséb'c

Try to find a solution of the form :
x(t)=Xe ™ y(t)=Ye ™
Denote @, =wcosé

—q2+% i20,q X—O
-20,q -¢+5\Y

Non - trivial solutions :

2
g, =atftf=o o +%
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More details
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Foucault pendulum continued — coupled equations:

Solution continued : 2
X(t) = Xeiiqt y(t) = Yeiiqt

—q2+% 20, q X—O
—-20,q -¢*+5\Y

Non - trivial solutions :

2
g, =arf=w o, +%

Amplitude relationship: X =iY

E
General solution with complex amplitudes C and D :
x(t)=Re {i Ce @ PV 4 iDeiaF) }
(t) = Re{Ce " 4 pe-iter) |
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Solving the differential equations.



General solution with complex amplitudes C and D :
¥(1) = Re{Ce™@ ¥ 4 pe-lapr]

q. :aiﬂza)Li,/a)l2+§ za)li\/%
since @, ®7x107 cos@ rad /s << \/%
Suppose:  x(0) = X, )=0
ote tha
x(t)=2X, cos(\/%t)cos(a)g) e ;,,
“ 7243600 s
y(i)=-X, cos(\/%t)sin(wlt)
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=7x107 rad/sec

More details and approximations.
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Summary of approximate solution for Foucault pendulum:

| =

T x(t) = X, cos(\/%t)cos(a)g)
y(t)= - X, cos(\/%t)sin(a)lt)
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Suppose:  x(0) = X, y(0)= 0

Summary
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Yy (east) L?;E?fe
z (up) R
30 (J;: - 30
x (south) Exuator { f; TDB u
ys
@, = m,cosl
= g
x(0) =X, cos(\/ﬂ)cos(a)ﬁ)
f— g .
yi)= —-X, cos(,/ﬁ)sm(a)ﬁ)
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It is interesting to estimate the effects in different parts of the globe. Note that theta is
defined for the polar angle, while if you look up your latitude you will find 90-theta.



