PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF Online or (occasionally) in
Olin103

Discussion for Lecture 7
Chapter 3.17 of F&W

Introduction to the calculus of variations
1. Mathematical construction
2. Practical use

3. Examples
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Colloguium on Thursday --

WAKE FOREST Department of Physics

Thursday, Sept. 10, 2020
4 PM

Wanyi Nie, PhD

Center for Integrated Nanotechnologies
Los Alamos National Laboratory, Los Alamos, NM
Wake Forest University Alum

“Metal Halide Hybrid Perovskite
Semiconductors for Opto-Electronic Device”

Metal halide perovskites are emerging class of semiconducting materials that possess unique opto-
electronic properties. On one hand, the photo-physical properties are drastically different than other
conventional semiconductors originating from their hybrid structures. On the other hand. the
electronic transport properties are tied closely to their local structure and dynamics which may
show properties beyond the classical system. The complex system is thus a new interesting
platform for exploring new physical properties used in opto-electronic devices.
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Course schedule

(Preliminary schedule - subject to frequent adjustment.)

09| ""-li | o & W N =] |

Date F&W Reading |Topic Assignment Due
Wed, 8/26/2020|Chap. 1 Introduction #1 8/31/2020
Fri, 828/2020 ||Chap. 1 Scattering theory #2 9/02/2020
Mon, 8/31/2020 |Chap. 1 Scattering theory #J 9/04/2020
Wed, 9/02/2020|Chap. 1 Scattering theory

Fri, 9/04/2020 |(Chap. 1 Scattering theory #4 9/09/2020
Mon, 9/07/2020|Chap. 2 Non-inertial coordinate systems

Wed, 9/09/2020 |Chap. 3 Calculus of Variation #o 9/11/2020
Fri, 9/11/2020 |(Chap. 3 Calculus of Variation #6 9/14/2020
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Your questions —

From Tim

1. When you say a well-defined function in slide 11, what does that mean? Also
why does the first term in slide 12 go to zero when the second term does
not? Aren't both terms in that equation equivalent?

From Gao
1. About lecture 7, Why use caculus of variations to find the function y(x)? |

think it is abstract.

From Nick

1. Can you explain what we mean by a well-defined function?

2. I'm getting lost in the notation starting around slide 9. Hopefully we can go
over that tomorrow. In particular, I'm not sure I'm following the \delta notation.



In Chapter 3, the notion of Lagrangian dynamics is developed;
reformulating Newton'’s laws in terms of minimization of related
functions. In preparation, we need to develop a mathematical

tool known as “the calculus of variation”.

Minimization of a simple function

local
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Minimization of a simple function
Given a function V' (x), find the value(s) of x

for which V' (x) 1s minimized (or maximized).
dV

dx

Necessary condition : 0
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Functional minimization
Consider a family of functions y(x), with fixed end points

y(x;) =y, and y(x,) =y, and a function L(< y(x),— >,xj.

~

Find the function y(x) which extremizes L (< y(x),—¢, xj.

Necessary condition: oL =0

1

Example: y 0'6::

1,1 1

L= j\/(dx)2+(dy)2 ole—"onrr— |

(0,0) 0 0.2 04 06 0.8
X



Difference between minimization of a function V(x) and
the minimization in the calculus of variation.

Minimization of a function
=2>Know V(x)  =>Find x, such that V(x;) is a minimum.

Calculus of variation

For x, < x < x, want to find a function y(x)

that minimizes an integral that depends on y(x).
The analysis involves deriving and solving a differential

equation for y(x).



Functional minimization
Consider a family of functions y(x), with fixed end points

y(x;) =y, and y(x,) =y, and a function L(< y(x),— >,xj.

~

Find the function y(x) which extremizes L (< y(x),—¢, xj.

Necessary condition: oL =0

1

Example: y 0'6::

1,1 1

L= j\/(dx)2+(dy)2 ole—"onrr— |

(0,0) 0 0.2 04 06 0.8
X



1;

Example: y 0'6::

o 2 2
L= [ (@) +(@) o=
(0,0) 0 0.2 04 06 0.8

1 dy 2 X
N .[ \/ L+ (_j dx Sample functions :
0

dx
1
yl(x)=x/; L :j1/1+idx=1.4789
g 4x

1
v, (x)=x L =I\/1+1dx=\/§:1.4142
0

1
¥, (x) = x7 L =I\/1+4x2dx=1.4789
0



Calculus of variation example for a pure integral functions

Find the function y(x) which extremizes L({ y(x), Z—y}, xj
X

where L({ y(x),%}, xj = JJ: f ({ y(x),%}, xjdx.

Necessary condition: oL =0

At any x, let y(x) = y(x)+ oy(x)

dy(x) _)dy(X) N 5dy(X)

dx dx dx

Formally :

(e of dy
5L_£ [ay)x,dy@+ La(dy/dx)jx,yg(dxj ax.

dx — -




Comment about notation concerning functional dependence
and partial derivatives

Suppose x, y, z represent independent variables that determine a function f :
We write f (x, y,z). A partial derivative with respect to x implies that we

hold y, z fixed and infinitessimally change x

(gj :1- (f(x+mayaz)_f(xayaz)j
11m

Ox Ax

Ax—0



After some derivations, we find

A
-]

L/
oy

B
= | =
Y ). &

dx

9/9/2020

(o
_i(@Jx

),*

dx

" dx

d
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of (@f
Sl 22
o(dy/ dx)jx,y dx

(8(di];dx)jx,y

o

dx

*

Note that this is a
“total”’ derivative
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“Some” derivations --
Consider the term

(s

Xy

I

Xj

dy
dx

8(dy/a’x)

xf

I

Xj

of
dy/ a’x)

dy
dx

E j‘S(

o

J

If y(x) 1s a well-defined function, then o (

J

g

dx dy/ dx)

dx -

i} .
dx = j

Xj

X,

o

g

d

dy/ dx)

*
&)1,
dx dx
d
—oy [dx
}xy dx d

o

_dx

g

dy/ dx)

X,y




% Your question -- what 1s the meaning of the following statement:

5(d_yj _ds,
dx dx

Up to now, the operator 0 1s not well defined and meant to be general.
Now let us suppose that i1t implies an infinitessimal difference to its function.

As an example, suppose that y(x,77) where x and 7 are independent such as

y(x,n)=x" For >0, and 0 < x <1

7 4 7 4 assume 7 >0
——y(x,n)=——y(x,n) =(1+nln(x)) x""

dndxy( ) dxdny( n)=(1+nn(x))

Note that the construction of this system is that
y(x;,n7) has the same value for all 7 and

y(x,,17) has the same value for all 7.
Example y(x,n7)=x" forx;=0and x, =1

Y, =y0,7)=0 and y, =y(l,n)=1



Note that the 6y notation is meant to imply a general

infinitessimal variation of the function y(x)
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“Some” derivations (continued)--

Xy

|

Xj

d

o

dx

|

g

o

dy/ dx)

8(dy/dx)

j ;

X,y

Y
y

Euler-Lagrange equation:

-

9
0y

]x,dy

d

o

d

A

_dx

g

d

dy/ dx)

of

XY

dx

d

|

of

G(dy/dx)

_dx

dx

g

dy/ dx)

)x,y

dx

g

=0 forallx, <x<x

dy | dx)

X,y

dx

) Oy ldx
X,y

dx

f



Your question — Why does this term go to zero?

td of d of
& (8(dy/dx)1y5y dx{@(dy/dx)lyay -

N?..<

Xf X
of ddl o
- Sy| - 5y id
(8(dy/dx)ly | dx((’i(dy/dx)ly .

tod of
= 0 - Sy d
I dx[@(dy/dx)ly s

Answer --

By construction oy(x,) =0y(x,)=0

9/9/2020 PHY 711 Fall 2020 -- Lecture 7 18



Recap <[ - 7

_(% o 4
oL = L@ij,dyéij (6(dy/dx)jx’y§(dxj i

dx _

X
:I (@j 4 ( g j oydx=0 forallx, <x<x,
L dx .y

Oy o(dy / dx)

dx — -]

= g _4 I =0 forallx, <x<x,
oy ).« dx|\0ldy/dx)),

" dx — -

Here we conclude that the integrand has to vanish at every
argument in order for the integral to be zero

a. Necessary?
b. Overkill?



Example: End points-- y(0)=0;y(l) =1

L

J ( jdx :f({y<x>,%},xj: \/1+(

|
(%j (a(dij;dx)jx’y =0

o d{ dy | dx ]o

x| \J1+(dy / dx)’
Solution:
( \
dy / dx — K ﬂ — Kv _ K
\/1+(dy/dx)2 dx - 1_ K2
. y

= y(x)=K'x+C P(x) = x



Example: Lamp shade shape y(x)

A= 27zj JHC@ dx :f({ (x), Zi},szx\/l+(%jz

o) d of 0 y
oy ) o dx|\ody/dx))

dx — -

]—o
)2

d xdy / dx
dx | 1+ (dy / dx
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( )

d xdy / dx 0

dx \\/1+(dy/dx)2 )
xdy / dx
JU+(dy ) dx)
ﬂ: 1

R

2

X X
= y(x)=K, - K/ In| —+ | — -1
)=k 1[K1 \/Kf j

:Kl




General form of solution --

X x?
x)=K,-K In| —+ —1
y(x)= {Kl K2 ]

Suppose K, =1 and K, = 2++/3

/2+\/§\

\x+\/x2—1)

1.2

1
0.8
0.6
0.4
0.2

0

)=In

0.5 1 15 2
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1.2

1
0.8
0.6
0.4
0.2

0

x)=In

0.5 1 L5 2
X

2
Azzyzjx\/l (dyj dx =15.02014144
1

dx

(according to Maple)

9/9/2020 PHY 711 Fall 2020 -- Lecture 7 24



Another example:
(Courtesy of F. B. Hildebrand, Methods of Applied Mathematics)

Consider all curves y(x)with »(0)=0and y(1)=1

that minimize the integral :

1 2
I = j @ —ay” |dx for constanta >0
\ \dx

Euler - Lagrange equation :
d’y

2

+ay=0

o sin(yax)
O Ginla)

dx




Review: for f ({y(x),dy},xj,
dx

a necessary condition to extremize j f ({ V(x), Zy } ]dx ;

X

o d of |
(f%jx,dy dx{[@(dy/dx)jxj <: Euler-Lagrange equation

dx

Note that for f ({y(x),%},xj,

o _(of\dy (o \d dy{@j

dx \dy )dx \o(dy/dx))dx dx \ ox
| d of dy_I_ of d a’yJ{@j
dx\o(dy/dx)))dx \o(dy/dx))dx dx  \ ox

d - of dy :(Oij < Alternate Euler-Lagrange
oldy/dx)dx ) \ ox equation




Brachistochrone problem: (solved by Newton in 1696)
http://mathworld.wolfram.com/BrachistochroneProblem.html

0- A particle of weight
mg travels
frictionlessly down a
e path of shape y(x).
Y 1 What is the shape of
| the path y(x) that

~0.5]

—1-5‘; minimizes the travel
ol . | | | . _| time from
0 1 2 3 y(0)=0to y(n)=-27


http://mathworld.wolfram.com/BrachistochroneProblem.html

( of

f_

dx

dy [5fj d of
-0 = - =0,
o(dy / dx) dx] ) b dx (Wﬂdﬂly

d 2
X
dx because Imv’ =-mgy
gy
1+ dy 2
B dx Note that for the original form of
\ -y Euler-Lagrange equation:

" dx L

differential equation is more complicated:
d 2
1 dx d dx

R XCC)



E(f_a
(

A

dx
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2
){14_(_J j:K52a Let y=—2asin2§=d(COS‘9_1)
dy  2asin§cos§d0

— = =d.
Q:_ /Z_a_l 2a i 2a i .
dx -y —y 2asin® ¢

dy g 0

(o, 1_ * x:ja(l—cos@')d@'za(ﬁ—sinﬁ)
- 0
-

Parametric equations for Brachistochrone:

x =a(@—sin )
y=a(cosd—1)



Parametric plot --
plot([theta-sin(theta), cos(theta)-1, theta = 0 .. Pi])

0
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