PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM  MWF Online or (occasionally) in
Olin103
Plan for Lecture 7 -- Chapter 3.17 of F&W
Introduction to the calculus of variations
1. Mathematical construction

2. Practical use

3. Examples
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The topic of “calculus of variation” is covered in Chapter 3, Section 17 of your textbook.
We will study the mathematical formalism first before showing how it is useful for studying
mechanical systems.



Course schedule

{Preliminary schedule -- subject to frequent adjustment )

[ |Date [F&W Reading | Topic |Assignment [Due
[1|Wed, 8/26/2020Chap. 1 |Introduction # [8/31/2020
[2[Fri, 8/28/2020 [Chap_ 1 |Scattering theory #2 [9/02/2020
[3|Mon, 8/31/2020/[Chap. 1 |Scattering theory #3 [9/04/2020
[4|Wed, 9/02/2020Chap_ 1 |Scattering theory | |
[/[Fri, 9/04/2020 [Chap. 1 |Scattering theory #4 [9/09/2020
[6[Mon, 9/07/2020 [Chap_2 [Non-inertial coordinate systems|| |

»ﬁ |Wed, 9/09/2020|Chap. 3 |Calculus of Variation #5 [9/11/2020
[8Fri, 9/11/2020 [Chap_3 |Calculus of Variation 46 [9/14/2020
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There is a short problem on this subject that will be do on Friday.



In Chapter 3, the notion of Lagrangian dynamics is developed;
reformulating Newton’s laws in terms of minimization of related
functions. In preparation, we need to develop a mathematical

tool known as “the calculus of variation”.

Minimization of a simple function

local
inimu
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First we should review the notion of a minimum in a continuous function. Here is a plot
of V(x) showing two different minima at two different points x.



Minimization of a simple function
Given a function V' (x), find the value(s) of x

for which V' (x) is minimized (or maximized).

. dv
Necessary condition: —— =0
dx
30+
257
v 20"
157
101
5_
0

We see from this plot that a conduction for a function to have a minimum at a point is that
its derivative is zero at that point.  You see in this example another point where dV/dx,
but there is not a minimum.  So we say the dV/dx is a necessary but not sufficient
condition on having a minimum.



Functional minimization
Consider a family of functions y(x), with fixed end points

y(x;) =y, and y(x,) =y, and a function L({y(x),%},x)
_ _ »

Find the function y(x) which extremizes L ({ y(x),%} , xj.
X

Necessary condition: oL =0

1

Example: yO'G
1,1

L= [J@f+@f
(0.0)

0 02 04 06 08 1
X
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The calculus of variation also searches for minima, but instead of finding a point where a
function has a minimum, we search for a functional form that minimizes an integral.



Difference between minimization of a function V(x) and
the minimization in the calculus of variation.

Minimization of a function
=2>Know V(x)  =>»Find x, such that V(x,) is a minimum.

Calculus of variation
For x; < x < x, want to find a function y(x)

that minimizes an integral that depends on y(x).
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Comparison



Functional minimization
Consider a family of functions y(x), with fixed end points

y(x;)=y, and y(x,) = y, and a function L({y(x),%},xj.
_ _ »

Find the function y(x) which extremizes L ({ y(x),%} , xj.
X

Necessary condition: oL =0

1

Example: y 0.6

1,1
L= [y +@) =T
(0,0) 0 0.2 0.4 0.6 0.8
X
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The calculus of variation involves consideration of a function of a function.

to denote such a function.

Here we use L



1
Example: y0'6
e 2 2
L= J. (dx) +(dy) 0 : | : : ‘
(0.0) 0 0.2 0.4 06 0.8 1

1

_ 4

B J I+ (d_j * Sample functions::
0

1
y,(x)=/x L =J.‘/1+4ixdx=1.4789
0

1

P, (x)=x L =J.\/1+1dx=\/§:1,4142
0
1

y,(x) = x? L =[1+4x dx=1.4789
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For this example we can write the distance along a curve between two points x=0,y=0 and
x=1,y=1 as a normal integral over x as shown.



Calculus of variation example for a pure integral functions

Find the function y(x) which extremizes L({ y(x), %}, xj
x

where L({ y(x),%}, x) = )]1 f ({ y(x),%}, xjdx.

Necessary condition: oL =0

Atany x, let y(x) = y(x)+ oy(x)

dy(x) _)dy(x) N 5dy(X)
dx dx dx

Formally:

w-|(3), o (o), 1)

X
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After some derivations, we find
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~ Xy al L Q
o 3! (5J’jxfly@} " H@(dy / dx)l’y 5( dx

~ Xy % _i L )

: I (@Ly dx K@(dy/dx)lj Sydx =0 forallx, <x<x,

= g _Aff_ 9 =0 forallx,<x<x,
y ) dx|\ dldy/dx))

g

Using calculus to simplify the integral.

10



“Some” derivations --
Consider term

(a2l
d

If y(x) is a well-defined function, then & (ﬂj =—00y
dx) dx

[ [ [
-] [dx [( dy/dx)ly 5y]_%(8(%];dx)ly 5y]dx
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Some details.
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“Some” derivations (continued)--

e, - ).
[(%j 5{ _I {%{%L 5y]dx
_ 0 j[dx[@ dy/dx))yéy}dx

Euler-Lagrange equation:

= g 49 =0 forally,<x<x,
oy ) & dx G(dy/dx) ,
’d x’

X
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Example: End points--y(0)=0;y(1)=1

Solution:
dy / dx : _x d_y:K,E K :
1+ (dy / dx) dx VI-K
= y(x)=K'x+C y(x)=x
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Your homework problem is very similar to this.



Example:

9| _4
oy ) a dx
"dx

9/9/2020

:_i xdy / dx 0
dx\ 1+ (dy/dx)

Lamp shade shape y(x)

A=27r;!fx l+(%) dx :f({y(x),%},x)zx 1+(%)

() |-

i Yi

.1_______________>_ <
X

!
|

PHY 711 Fa

Here is another example of the use of calculus of variation.
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9/9/2020

d xdy / dx

_4 = =0
dx| 1+ (dy ! dx)

dy ! d

xdy | dx .y
\/1+(dy/dx)
dy _ !

dx X 2
— | -1
LKJ
X X

2
jy(X)ZKZ—KIIH(E‘F F—lj

1
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After these steps, the solution is found up to some constants.
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General form of solution --

1 1

X x2
x)=K,—K,In| —+ |[—-1
y() 2 1 (K Kz j

Suppose K, =1 and K, =2+ NE)

2+\/§
,¥(x) =1In
x+xt =1

1.2

1
0.8
0.6
0.4
0.2

0

05 1 L5 2
X
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1.2

1
0.8
0.6
0.4
0.2

0

9/9/2020

2+\/§

,y(x)=1In

x++/x" -1

05 1 1.5 2
X

2 2
A= 27zjx 1+(@j dx =15.02014144
1

dx

(according to Maple)
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Evaluating results for particular boundary values.
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Another example:
(Courtesy of F. B. Hildebrand, Methods of Applied Mathematics)

Consider all curves y(x) with y(0)=0and y(1)=1

that minimize the integral :

1 2
1= j @ —ay® |dx for constanta >0
o\ Ldx

Euler - Lagrange equation :
d’y

2
X

sin \/Zx
jymzﬁ(ﬁ)}
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+ay=0

Another example.
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Review: for f({y(x),?},x}
X

xr
a necessary condition to extremize J. f ({ y(x),%},x)dx :
‘ X

Xl

o d of |
gl _4 P ]
(ayldy dx [(6(dy / dx)lj <:| Euler-Lagrange equation

dx

Note that for f ({ y(x),Q}, xj,
dx

& (N (o im@
dc oy )dx \o(dy/dx))dx dx \ éx

B N /A | O R/ iﬂ{@j
dx\ d(dy/dx)))dx \ d(dy/dx))dx dx \ ox
i o dy\_(9 Alternate Euler-Lagrange
ady/dx)dx ) \ ox equation
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d
:> PR
dx

9/9/202

Summary and extension.
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A particle of weight
mg travels
frictionlessly down a
path of shape y(x).
What is the shape of
the path y(x) that
minimizes the travel
time from

y(0)=0to y(n)=-27

Brachistochrone problem: (solved by Newton in 1696)
http://mathworld.wolfram.com/BrachistochroneProblem.html

0_
-0.57
y -1
-1.51

- 2_| T T T

0 1 2 3

X
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Prelude to what we will cover next time.
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JZ
L2
dx because “mv’ =-mgy

2
1+ dy
dx ) Note that for the original form of

-y Euler-Lagrange equation:

d of dy)_ (6f) d of
—| f-————Z|=0 ~1 " E s =0,
dy | dx) dx o) o dv|(O(dy/dv) ) |
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differential equation is more complicated:

Some details.

21
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9 &

A(dy / dx) dx

&)
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More details.
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2
—y(l+(—j]:K52a Let y=-2asin’%=a(cos@-1)
dy  2asin§cos§df

- =d
dy_ [2a 2 _, 2,
dx -y -y 2asin® ¢

2a x=|a(l-cos#')d6'= a(6—sin 6)

Parametric equations for Brachistochrone:

x = a(6—sin )
y=a(cosd-1)
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Parametric plot --
plot([theta-sin(theta), cos(theta)-1, theta = 0 .. Pi])

0 :
1 2 3

-0.51

y 1
- 1.57

_ 2 E

X
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