PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF Online or (occasionally) in
Olin 103

Plan for Lecture 8 — Chap. 3 F & W

Calculus of variation
1. Brachistochrone problem
2. Calculus of variation with constraints

3. Application to classical mechanics
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In this lecture, we will continue to develop notions of the calculations of variation and to
start to show how they may be applied to classical mechanics.



Course schedule

{Preliminary schedule -- subject to frequent adjustment )

[ |Date [F&W Reading | Topic |Assignment [Due
[1|Wed, 8/26/2020Chap. 1 |Introduction # [8/31/2020
[2[Fri, 8/28/2020 [Chap_ 1 |Scattering theory #2 [9/02/2020
[3|Mon, 8/31/2020/[Chap. 1 |Scattering theory #3 [9/04/2020
[4|Wed, 9/02/2020Chap_ 1 |Scattering theory | |

[/[Fri, 9/04/2020 [Chap. 1 |Scattering theory #4 [9/09/2020
[6[Mon, 9/07/2020 [Chap_2 [Non-inertial coordinate systems|| |

7|[Wed, 9/09/2020 [Chap. 3 |Calculus of Variation #5 [9/11/2020
[8Fri, 9/11/2020 [Chap_3 |Calculus of Variation 46 [9/14/2020
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There is one homework problem for this lecture.



PHY 711 — Assignment #6
September 7, 2020
This exercise is designed to illustrate the differences between partial and total derivatives,

1. Consider an arbitrary function of the form f = f(q.q.t), where it is assumed that g = ¢(1)
and ¢ = dq/dt.

(a) Evaluate
odr_dos
dqdt — di dq’
(b) Ewvaluate
odf  daf
dqdt  dtdg’
(¢) Evaluate
df
dt’
(d) Now suppose that
flg.q.t) = q¢*t*, where q(t) =e "7,

Here 7 is a constant. Evaluate df /dt using the expression you just derived. Now find the
expression for [ as an explicit function of ¢ (f(f)) and take its time derivative directly

to check your previous reg

te
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It might be useful to evaluate part (c) first.



Review: for f({y(x),?},x}
X

xr
a necessary condition to extremize J. f ({ y(x),%},x)dx :
‘ X

Xl

o d of |
gl _4 P ]
(ayldy dx [(6(dy / dx)lj <:| Euler-Lagrange equation

dx

Note that for f ({ y(x),Q}, xj,
dx

& (N (o im@
dc oy )dx \o(dy/dx))dx dx \ éx

(4o N\, _o iﬂ{@j
dx\ d(dy/dx)))dx \ d(dy/dx))dx dx \ ox
ji i o dy\_(9 Alternate Euler-Lagrange
dx ady/dx)dx ) \ ox equation
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Summary of the equations we worked out last time.



Brachistochrone problem: (solved by Newton in 1696)
http://mathworld.wolfram.com/BrachistochroneProblem.html

A particle of weight
mg travels
frictionlessly down a
path of shape y(x).
What is the shape of
the path y(x) that
minimizes the travel
time from

y(0)=0to y(n)=-27

E:Emv2+mgy

With the choice of initial conditions,
9/11/2020 E=0
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This is the famous problem.



Vote for your favorite path
0 :
2
-0.5-
_1-
~1.5-
,2-
Which gives the shortest time?
a. Green
b. Red
c. Blue
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What curve will win the race?



i),

L2
x  because mv° =-mgy

2
1+ dy
dx ) Note that for the original form of
-y Euler-Lagrange equation:

d of dy)_ (afj d of
—| f-————=— =0 = ——||=— =0,
de\” o(dy/ dx)dx oy )a dx|(0(dy/dx))

differential equation is more complicated:

o)
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Some details of the Euler-Lagrange equations.  The green equations look harder.



9/11/2020

9 &

A(dy / dx) dx

&)

PHY 711 Fall 2020 -- Lecture 8

Calling the integration 2a is very convenient.




2
—y(l+(d—j ]zKEZa Let y=—2asin2§=a(cos6’—1)
X

dy  2asin§cos§df

ﬂ:_/2_a_1 B 2761_1_ 2a 1
dx -y -y 2asin® ¢

0
IR x = [ a(l-cos 0)d0'= a0 -sin 0)
0

Parametric equations for Brachistochrone:

x = a(6—sin )
y=a(cosd-1)
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Very clever mathematics.



Parametric plot --
plot([theta-sin(theta), cos(theta)-1, theta = 0 .. Pi])
0 :
1 2 3
-0.51
y 1
- 1.57
_2-
X
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Visualization of the result.
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Checking the results  © .
-0.51
dy :
: I+ —
XYy ds Xy (dxj 14
r=| —= dx
YJ; ’ ! /~2&y 151
,27
T=infinite

T=5.2668 :
T=4.4429 (units of \/(2g) )
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How did you do with your bet?



Summary of the method of calculus of variation --
Consider a family of functions y(x), with the end points

y(x;) =y, and y(x,) = y, and an integral function

1 ({W&%}J}f / (y(X),%;Xde.

Find the function y(x) which extremizes / ({ y(x),%},xj.
X

ol =0 = Euler-Lagrange equation:

(g] —iﬂi) ] =0 forallx, <x<x
oy ), dx|\o(dy/dx)) ’ !

" dx
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Summary of equations to use.
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Euler-Lagrange equation:

X,
dx

Alternate Euler-Lagrange equation:

a9 b _(@j
de\”  o(dy/dx)dx) \éx
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o) d of o
oy ) o dx|\8(dy/dx)) -

It is a good idea to remember these equations.
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Another example optimization problem:

Determine the shape y(x) of a rope of length L and mass
density p hanging between two points

X1Y1

XY,
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Another example needing extra information.
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Potential energy of hanging rope :

E= pgjy\/@dx

Length of rope:
2
L= I 1+(d j dx
dx

W=FE+AL

Lagrange multiplier
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Deﬁne a composite function to minimize :

How to minimize with a constraint.
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w =T(,0gy+/1) 1+(ﬂj2dx

A

|
st

ody / dx) dx ox

», dy}j =(pgy +1) 1+(d—yj2
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(o)
5 ay
= (pgy + 1) 1+(@j __\dx

dx dy

1+(

X

")

Applying the equations.
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(pay+ ) ———— |-k

1 xX—a
y(x)= _EE/“_KCOS}{K/,OgD
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1 xX—a
y(x) = —E(/IJrKcosh[K/pgD

Integration constants : K, a, A

Constraints :  y(x,) =y,
Yy (xz )=y 2

Xy 2
| 1+(d—y) dx=L
: dx
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The solutions in (almost) convenient form.
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Summary of results

For the class of problems where we need to perform an extremization

on an integral form:

I = ff({y(x),fl—y},dex ol =0
: X

A necessary condition is the Euler-Lagrange equations:

24w -

df, o) (@)
dx 8(dy/dx)dx ox
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Summary again.
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Application to particle dynamics
x—>t (time)
¥y —>q (generalized coordinate)
f — L (Lagrangian)
I —>AorS (action)

Denote: g E@

dt

A=[L({g.q}:t)at
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We will now start to apply this mathematics to the physics of motion.

variables that will apply. A is called “action”. Lis called “Lagrangian”.

Here we map the

20



Application to particle dynamics
Hamilton’s principle states that the dynamical trajectory of a
system is given by the path that extremizes the action integral

A= :[L({q,q};t)dt EIL({y,%};t]dt

Simple example: vertical trajectory of particle of mass m subject
to constant downward acceleration a=-g.

) d’
Newton's formulation: m dtf =—-mg
Resultant trajectory: y(t)=y, +vt—Lgt’

Lagrangian for this case:

1 (dy ’
L=-m| 2| -
(%) e
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Here we will show how Newton’s laws can be written in terms of the Lagrangian formalism.
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http://www-history.mcs.st-and.ac.uk/Biographies/Hamilton.html

Sitemap

Home
Biography
Mathematical stud

Hamilton Key Dates
Hamilton Links
Graphics

Math News

William Rowan Hamilton

Tribute to Sir William Hamilton

Hello and welcome! This page is dedicated to the life and work of Sir william
Rowan Hamilton.

Wiliam Rowan Hamilton was Ireland's greatest scientist. He was an
mathematician, physicist, and astronomer and made important works in
optics, dynamics, and algebra.

His contribution in dynamics plays a important role in the later developed
quantum mechanics. His name was perpetuated in one of the fundamental
concepts in quantum mechanics, called "Hamiltonian”.

The Discovery of Quaternions is probably is his most familiar invention
today.

2005 was the Hamilton Year, celebrating his 200th birthday. The year was
dedicated to celebrate Irish Science. 2005 was called the Einstein year also,
reminding of three great papers of the year 1905. So UNESCO designated
2005 to the World Year of Physics

Thanks for visiting this site! Please enjoy your stay while browsing through
the pages.
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Wednesday, September 11th, 201
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In addition to Euler and Lagrange, we need to thank Hamilton as well.
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‘Eire

illiam Rowan Hamilton

3-1865

https://irishpostalheritagegpo.wordpress.com/2017/06/08/william-rowan-hamilton-irish-mathematician-and-scientist/
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Now consider the Lagrangian defined to be :
dy
L t),—nt|=T-U
({y( ) dt} j f \

Potential
energy

Kinetic
energy
In our example:

L({y(t),%},t} =7T-U= %m(%) —mgy

Hamilton's principle states:

Ly
S = j L({ y(t),%},tjdt is minimized for physical y(¢) :
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First we will show that it works with these relationships and then we will justify how this
might work.
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“(1 alyj2
S=||—-m|—=| —mgy |dt
I[z (dt &

Euler-Lagrange relations:
OL d oL 0
oy dt oy
= —-mg — imy =0
dt
:>%%=—g y(t):yi_l_vit_%gtz
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Condition for minimizing the action in example:

Action is sometimes A and sometimes S.
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Check:

Iy 1 dy2
S=(|=m| 2| - mgy |dt
([30(5) -me

Assume £, =0, y,=h=3gT?* t,=T, y, =0
Trial trajectories: y,(1)=1gT?(1-¢t/T)=h-1
() =1el* (1= /T ) =h-
» (O =1gT* (1= /T*)=h-
Maple says:
S, =-0.125mg’T’
,=-0.167mg’T
S, =-0.150mg’T*
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gTt

2
38t

g’ /T
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Checking the minimization.
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