PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes on Lecture 14 -- Chap. 6 (F & W)
Extensions of Hamiltonian formalism

1. Virial theorem
2. Canonical transformations

3. Hamilton-Jacobi formalism
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Presenter
Presentation Notes
In this lecture we will discuss a variety of identities and methods and historically important ideas related to Hamiltonian and Lagrangian mechanics.


Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

Date F&W Reading [Topic Assignment | Due

1 |Mon, 8/23/2021 |Chap. 1 Introduction #1 8/27/2021

2 |Wed, 8/25/2021 |Chap. 1 Scattering theory #2 8/30/2021

3 |[Fri, 8/27/2021 ||Chap. 1 Scattering theory

4 |Mon, 8/30/2021 |Chap. 1 Scattering theory #3 9/01/2021

5 [Wed, 9/01/2021 |Chap. 1 Summary of scattering theory =4 9/03/2021

6 |Fri, 9/03/2021 |Chap. 2 Non-inertial coordinate systems #5 9/06/2021

7 [Mon, 9/06/2021 |Chap. 3 Calculus of Variation #6 9/10/2021

8 |Wed, 9/08/2021 |Chap. 3 Calculus of Variation

9 [Fri, 9/10/2021 ||Chap.3 & 6 |Lagrangian Mechanics #7 9/13/2021

10 Mon, 9/13/2021|Chap. 3 & 6  |Lagrangian Mechanics #8 9/17/2021

11 |Wed, 9/15/2021 [Chap. 3 & 6  |[Constants of the motion

12||Fri, 9/17/2021 |Chap.3 & 6  |[Hamiltonian equations of motion  |#9 9/20/2021

13 |Mon, 9/20/2021 [Chap. 3 & 6 Liouville theorm #10 9/22/2021
» 14|Wed, 9/22/2021 |Chap. 3 & 6  |[Canonical transformations

15||Fri, 9/24/2021 |Chap. 4 Small oscillations about equilibrium

9/22/2021
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Note that the schedule shows that this lecture will wrap up Chapters 3 and 6.    There is no new homework assignment.   On Monday we will start discussing Chap. 4 and apply Lagrangian and Hamiltonian mechanics to small oscillations.


PHYSICS THURSDAY

C O LLO Q U | U M SEPTEMBER 23, 2021

Part |l W ake Forest University
Theoretical and Physics Department
Computational Projects Research Opportunities
This colloguium is designed to give a snapshot of
the physics theoretical and computational research 4 PM in Olln 101 and
projects currently in progress at Wake Forest i
University. via Z200oIm

The hope is that these presentations will foster
collaborations between groups, inspire beginning
students to think about physics research and
possibly become engaged in it themselves, and
inform more senior students about how their

mentors and other mentors approach physics
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Comment on HW --
PHY 711 — Assignment #10

September 20, 2021

1. Consider a Lagrangian describing one dimensional motion of a particle of mass m in a me-
chanical potential V() with an addition time dependent function s(#) and extra constants ()
and K having the form

) ) 1 .9 . .9 .
L(x,i,s,8) = ST — Vir)+ Qs° — Kln(s).

(a) Find the constants of motion for this system.

(b) Find the corresponding Hamilitonian in canonical form H (x. p,.s. p,).

Inspired by Nose’s form, but only approximately since there is
no coupling between x and s. The equations of motion for x(t)

and s(t) are not trivial.
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Your questions —

From Can:

What is the definition of constant of motion”? Why is energy
some time part of the constant of motion?

Comment — Generally we mean anything that is constant
wrt time.

: 1 .
Example: L(y,y,t)= Emy2 — mgy
. d’ .
Euler-Lagrange equation: { — _o Here, no ObVIOU_S
dt constant of motion

. 1
General solution:  y(¢) =y, + vt — > gt
\flntegration constants



®
Virial theorem (Rudolf Clausius ~ 1870)

2(T) = _<z F, -r0>
Proof:
Define: 4= Zpa T

%zZ(pa-raera-i‘a):ZFa-ra+2T

o)

<d—A> = <ZFU -r> +2(T)
dt ° Note that this

<d_/1> _lj‘dA(f)dt _ A(r)-A4(0) . O‘ implies that the

dt| 7+ dt T motion is periodic
When it is or bounded (not
e - = <ZF0 .r> n 2<T> —() for all systems).

Because p,=F

o)
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The “virial theorem” is a useful identity for studying some mechanical systems.


Examples of the Virial Theorem 2<T> —< F_ -ro,>
Harmonic oscillator: ‘ iy ‘
B . 1, o\ /g2
F = —kxx T—me <mx >—<kx >
Check: for x(r)=X sin(\/EtJraJ
m
« 2 2 2 k 1 2
(2T)= <mx >=kX <c0s [\/:t+a]>——k)(
m 2

—<;FU -r0>=<kx2> = kX? <sin2 (\/%z + aj> = %sz

Premise true because of periodicity.
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Examples.


Examples of the Virial Theorem  2(T

Circular orbit due to gravitational field ’

of massive object:

F:—Gﬂfmf' T:lmv2 <mv2>—<
v 2
2
Check: for — = G]y — <mv2>—<
rooor
centripetal gravitational

acceleration force

Premise true because of periodicity.
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Another example.


Hamiltonian formalism and the canonical equations of
motion:

H=H({g, O}{p, ®O}t)

Canonical equations of motion

dq, OH
dt  op.
dp,  OH
dt ~ oq

In the next slides we will consider finding different coordinates
and momenta that can also describe the system. Why?
a. Because we can

b. Because it might be useful
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Review for a general Hamiltonian system.     The question is  what would happen if we change coordinates?


®
Notion of “Canonical” generalized coordinate transformations

Note that because

=0, ({001 R R)) e e ool
_pg({Q1 Qn}a{})lf)n}at) for each & ?el\;vriys add such a

For some H and F,  using Legendre transformations

> pod, - H{{g.}(p.} 1) = X R0, - ({0 )R} 0) + 4 F(fa.).(0.))

Apply Hamilton's pr1n01ple

5 | {ZPQ A1) 5 P (0. )r) =0
5| th 4,410, ] ,)}df:ﬂ%m{%} (0.} t)}dt
=§F(t,)-6F()=0  and O o f‘;:-ﬁ


Presenter
Presentation Notes
Thinking about changing the coordinates – indicated with lower case and larger case symbols.


B
Some details --

—%({Ql Qn},{[{---Pn},t) for each o
:pa({Ql---Qn},{R---g},t) for each o

For some H and F,  using Legendre transformations

2. Pods -H({q,}.{p,}:t)= ;PGQG —ﬁ({Qa}a{Pa}J)+%F({%}»{QG}J)

Action integral:

S :tjdt(;paq'a —H({%}’{p‘f}’t)]
55:ijjdt(2(

5Py, + Py94,) = SH ({4, )P, )1 )j

o

Note that 5fdz(dF(t)j jd (CMF(O)
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Some details.


= Some relations between old and new variables:

o7 dt
“ P, Lo },r>=;([§7i]q [a%FjQ &
=2 {G e rtwsina-
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More details.
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Relationship between new Hamiltonian and original Hamiltonian.


Note that it is conceivable that if we were extraordinarily
clever, we could find all of the constants of the motion!

O _oH p __od
oP. 00,
Suppose : Qazaﬂ_o and P ___8H =0
OF, 00,

= Q_,P  areconstants of the motion

Possible solution — Hamilton-Jacobi theory:

Suppose:  F({g, 110, }.) —ZPQ +S(ig, AP, }.1)
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Focusing  on  finding the constants of motion.


22040 ~H (i, )1, )=
YRV CRUANIEAE WREORAY)

(o}

Ao (P h)-S o, +z[§75q0+@—5aj+@—5

OP, ot
Solution :
oS oS
Po = oq._ Qo = OP.

fllo, b, )= 1(a, ko, ) S
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Deriving equations  for identifying constants of motion.


= When the dust clears :

Assume{Q_},{P.}, H are constants; choose H =0
Need to find S({g_},{P, },?)

oS oS
j— QG j—
oq._ OP.

( OS oS
—~ H i -0
L{qa }, <k8q0' }, tj_l_ at

Note: S 1isthe"action":

> .- il o, b -
’ 0 0 0
0.~} 1)+ 4~ re. sl b 2)

Po
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Details of derivation.
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More details.


Differential equation for S:

o

>

Example: H({q}, {p},t)=§—m+5mwzqz
Hamilton - Jacobi Eq: H ({q } {2—S}, tj Zf 0
q

1 8S 1 ) oS 0 Does this look
+—mw g +—= .
om\ oq 5 q° Py familiar?

Assume:  S(q,t)=W(q)— Et (£ constant)
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Hamilton-Jacobi using harmonic oscillator example.


Continued:

2
1 £6Sj Jrlmafq2 +6—S =0

2m\ Oq 2 ot
Assume:  S(q,t)=W(q)— Et (£ constant)
2
Law + l mw'q’ =E
2m\ dq 2

aw = \/2mE — (mw)2q2
dq

W (q) = [2mE - (mo) ¢*dg
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Hamilton-Jacobi equations for harmonic oscillator.


Continued:

W(q) = [2mE ~(mo) ¢*dg

:lq\/2mE—(ma))zqr2 +£sin1( e j+C

2 @ \N2mE

L.
S(q,E,t):%q\/Zian—(nfza))zq2 +—s1n1( | j—Et

0, N2mE
© _Q=isin1( med j—t

0E ° w J2mE
= q(t) = 2mk sin(a)(t + Q))

ma
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Continued.


Another example of Hamilton Jacobi equations
2

Example: H({y},{p},t)zé?—ermgy

Assume y(0) = 4; p(0)=0

Hamilton-Jacob1 Eq: H({y} 4 — >,t] +—=0

1 (asY oS
+mgy+—=0
2m\ Oy ot

Assume: S(y,t)=W(y)— Et (E constant)
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Another example of using the Hamilton-Jacobi equations.


® pz
Example: H({y},{p},t):—+mgy

2m
Assume y(0) = A; p(0)=0
2
1 (dW
+ mgy = E = mgh
2m( dy j & S

3/2

W(y)= Wtf\/2gh y')dy' ——mrh y)

/2

S(y,t) = W(y) Et= —m«/ (h—y)" —mght
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Continued.


Check action:
1

For this case: y(¢t)=h— 5 gt’
o 1 .2 1 2,3

Szj —my” —mgy |dt'=—mgt" — mght
"\ 2 3

3/2

S(y,t)=W(y)—Et =%m@(k —y) — mght

Agrees with Hamilton-Jacobi analysis.
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More details.


Alternatively, keeping £ notation:

W(y) =jl‘\/2mE—2m2gy'dy'

:\EL(E mey)"”
m g

S(y,t):W(y)—Er:\F32 (E-mgy)"” - Et
g

@S 2 1 1/2
=0 = ——(E mgy) —1
mg
1 In ourcase, Q=0

E
:>y(t): — g(t-l—Q)2 E =mgh
mg 2




What do you think of Hamilton-Jacobi method
Historically important

Hysterical

Painful

Might be useful

Qoo

The next 3 slides contain important equations that you will
hopefully remember for this material contained in Chapters
3 & 6 of Fetter and Walecka.  On Friday we will start with
Chapter 4 and discuss one of the many applications of
these ideas — the case of small oscillations near equilibrium.



Recap --

Lagrangian picture
For independent generalized coordinates ¢_(¢):
d oL OL
dt 0q_. 0Oq

= Second order differential equations for g_(¢)

=0

(o}

Hamiltonian picture

H=H(lg, 0} {p,(0)}1)
dq OH dp,  OH

O

dt  op. it~ oq

= Coupled first order differential equations for
q,(t) and  p_ (1)
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Summary of what we have learned.


General treatment of particle of mass m and charge g moving

in 3 dimensions in an potential U (r) as well as electromagnetic

scalar and vector potentials ®(r,z) and A(r,?):

Lagrangian: L(r,i‘,t)=%ml‘2 ~U(r)—q®(r,1)+ 9. A(r,t)
%
Hamiltonian:  p = 8_L = mr + gA(r,t)
or c
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More summary.


Recipe for constructing the Hamiltonian and analyzing
the equations of motion

1. Construct Lagrangian function : L = L({g,(¢)},{g, () },¢)

2. Compute generalized momenta: p_ = 8_L

4,
3. Construct Hamiltonian expression: H = Z q.p,—L

4. Form Hamiltonian function: H = H({g_(6)},{p. ()},)
5. Analyze canonical equations of motion :
dq_ OH dp,  OH

o

dt  op, dt ~ oq.
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Recipe to remember.
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