PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Discussion on Lecture 16: Chap. 4 (F&W)
Analysis of motion near equilibrium —
Normal Mode Analysis
1. Normal modes of vibration for simple systems
2. Some concepts of linear algebra

3. Normal modes of vibration for more complicated
systems
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Presenter
Presentation Notes
In this lecture, we will review the normal mode analysis and discuss some general aspects of linear algebra.
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Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

Date F&W Reading Topic Assignment |Due
1 Mon, 8/23/2021 |Chap. 1 Introduction #1 8/27/2021
2 |Wed, 8/25/2021 |[Chap. 1 Scattering theory #2 8/30/2021
3 |Fri, 8/27/2021 |[Chap. 1 Scattering theory
4 Mon, 8/30/2021 |Chap. 1 Scattering theory #3 9/01/2021
5 [Wed, 9/01/2021 |Chap. 1 Summary of scattering theory =4 9/03/2021
6 |Fri, 9/03/2021 [Chap. 2 Non-inertial coordinate systems #5 9/06/2021
7 Mon, 9/06/2021 |Chap. 3 Calculus of Variation #6 9/10/2021
8 |Wed, 9/08/2021 [Chap. 3 Calculus of Variation
9 |Fri, 9/10/2021 [Chap.3 & 6  ||Lagrangian Mechanics #7 9/13/2021
10 |Mon, 9/13/2021 |Chap. 3 & 6  |Lagrangian Mechanics #8 9/17/2021
11 [Wed, 9/15/2021 |Chap. 3 & 6  |Constants of the motion
12 |Fri, 9/17/2021 |Chap.3 & 6 | |Hamiltonian equations of motion #9 9/20/2021
13 Mon, 9/20/2021 |Chap. 3 & 6 Liouville theorm #10 9/22/2021
14 'Wed, 9/22/2021 |Chap. 3 & 6 | |Canonical transformations
15 |Fri, 9/24/2021 |Chap. 4 Small oscillations about equilibrium #11 9/27/2021
16 Mon, 9/27/2021 |Chap. 4 Normal modes of vibration #12 9/29/2021
17 |Wed, 9/29/2021 |Chap. 4 Normal modes of more complicated systems
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PHY 711 -- Assignment #12

Sept. 27,2021
Continue reading Chapter 4 in Fetter & Walecka.

. Consider the the mass and spring system described by Eq. 24.1 and Fig. 24.1 in Fetter & Walecka.
Explicitly consider the case of N=6 and find the 6 coupled equations of motion. Compare the normal
mode eigenvalues for this case (obtained with the help of Maple or Mathematica) with the equivalent
analysis given by Eq. 24.38.
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Homework due Wedesday.
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Reminder about dates.


Your questions —

From Wells -- Whatexactly does it mean for matrices to be similar? Is the
only requirement that they have the same eigenvalues?

Comment — We will go over that point in this lecture ....



Example — linear molecule

—> X
1 > X,
> X,
1, 1 5, 1 .
L=—mx +—mx; +—mx;
2 2 2

1

1
_Ek(xz —X _612)2 —

Ek(xs — X, _623)2

9/27/2021 PHY 711 Fall 2021 -- Lecture 16


Presenter
Presentation Notes
Back to the discussion of one-dimensional motion of masses and springs.


B
Let: x, —>x—-x x,>x,-x —{, x,—>x-x —{,—/,,
L= %mlxl2 + %mzxz2 + %77133632 —%k(x2 — X, )2 —%k(x_% — X, )2
Coupled equations of motion :
mx, = k(x2 —xl)
m,X, = —k(x2 — X, )+ k(x3 - X, ) = k(x1 —2x, + x3)
My X, = —k(x3 - xz)
Let x(1)=X"e™
o.mX, = k( ) —XI“)
OPm, X5 = k(X -2X7 + X7)

02m X ¢ = k(X7 - x7)

QNQNQN
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More review.


Coupled linear equations:
—@’m X" =KX - x7)
—w’m, X =k(X* —2x7 + x7)
- oim X =—k(x{ - X7 )
Matrix form :

= w’'m, —k 0
—k 2k —w’m, —k

.0 —k k—a)jmw




Matrix form:

(k-o’m -k 0 ) xo
-k 2k-w’m, -k || X7|=0

More convenient form:

Let Y = \/%X . Equations for Y, take the form:

\ o
/Kn o 0)025 —K; 0 (Yl )
—K; 2K22 - 0)025 —Ky; Yza =0
\ 0 —Ky; K33 — a)ozg/ \Y_%a)




Rearranging the equation to an eigenvalue problem:
a o
( Ky —Kp 0 \/Yl /Yl )
—K, 2Ky, —Ky||Y) |=o,| Y
\ 0 Ky Ky ) \Y3a) \Ysa)
Special case for CO, molecule --m, =m, =m, and m, =m,_
(ya a )
(Koo —Koc 0 (Y ) /Y1

a | __ 2 o
—Koc 2KCC —Koc Yz =, Yz

(\®)

\ 0 ~Koc Koo /\Y:sa) \Ysa/



For m =m,=m,

and m, =m,

>
B k
W, = |—
mg
P
m
—

2k

mc

k
+
(@)

O
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Reviewing results for example isolated molecule.


Eigenvalues and eigenvectors:

0

L

m

k 2k
o Mc
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(g )

(with help from Maple)
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N,N’ are
) )
X, |=N"|1
\X31/ \1/
(X2 (1)
X; =N, 0
\X_?,z/ —1)
) /X13\ (1)
, | X, |=N,| 2
) \X;/ \ 1 }

12



Finding eigenvalues/eigenvectors by hand --
Mya — ﬂ/O{ya

\

M - 2“1

‘M - 1°1

v -0

= det (M — /1“1) =0 = polynomial for solutions A

For each  and 1“ solve for the eigenvector coefficients y*“

Example
(4 J4B 0
M=|-J4B 2B —J4B
0 V4B 4
A-2“ —J4B
M- AU =|-J4B 2B-A°
0 —J4B

\

J
0

—JA4B

A-A°

zksj; BEJ&-
mg, me
=2“(A" - 4)(A“ - (4+2B))=0



Example -- continued

M =

\M 24

— AB

A4 —J4B 0
2B 4B

0 —JAB 4

A-2% —JAB

—|-J4B 2B-2°

0 —J4B

0
— AB

A-1°

= 2% (A% - 4)(4°

Solving for eigenvector corresponding to A% = A' =0

(4

— AB
0

— AB

0

y101
2B —JAB || y. |=0
_JaB 4 |\,

_ lell _ Y%z
Ye Ve

—(4+2B))

%

Note that the normalization of the eigenvector is arbitrary.



Digression on matrices -- continued

Eigenvalues of a matrix are “invariant” under a similarity
transformation

Eigenvalue properties of matrix: My, =214y,

Transformed matrix: M'y', =4"y',

If M'=SMS™ then A' =4, andS7y' =y,
Proof SMSy', =4"y',

M(S7y') =4 (87 ")

This means that if a matrix is “similar” to a Hermitian matrix,
It has the same eigenvalues. The corresponding
eigenvectors of M and M’ are not the same but y,=S7'y'



Example of a similarity transformation:

Original problem written in eigenvalue form:

k/m — —k/m, 0 X7 X! Note that this
~k/m, 2kim, —k/m, | X{|=a]| XS matrix is not
0 —k/m, kim, )| X Xe symmetric

\/%1 0 0 K, —K, 0

Let S=| 0 Jm, 0 | SMS'=|-k, 2K, -k,

0 0 \/m73 0 —K; Ky

Let Y=SX
Kn  —Kp 0 Yla Yla Note that this
—K 2K22 —Ky Yza = a)i Yza matrix is
0 -xy & |1 Yy symmetric

where K. =K

ij Ji [
ml.m j

9/27/2021 PHY 711 Fall 2021 -- Lecture 16 16



Note, here we have defined S as a transformation
matrix (often called a similarity transformation matrix)

Sometimes, the similarity transformation 1s also unitary so that
Uu'=U"

Example for 2x2 case --

U= cosf sind U U - cosf —sind
| —sin® cos@ - |sin@ cosd

How can you find a unitary transformation that also
diagonalizes a matrix?

A B 0
M|

Example -- M=
B C 0 A4,



Example -- M:(A Bj M.:[ﬂq 0)

B C 0 A4,
. cosd sind
M'=UMU for U = ,
—sinf@ cosd

M- Acos’® @+ Csin® @+ Bsin20 —Bcos20—1(C— A)sin26

~Bcos20—1(C—A)sin20  Asin® @+ Ccos’ @ — Bsin20
C—-A4

= A, = Acos’ @+ Csin® @+ Bsin26

= A, = Asin” @+ C cos” § — Bsin20

—2B
— choose 6= %tan_1 [—j

Note that this “trick” is special for 2x2 matrices, but numerical
extensions based on the trick are possible.



Note that transformations using unitary matrices are often
convenient and they can be easily constructed from the
eigenvalues of a matrix.

Suppose you have an N x N matrix M and find all N eigenvalues/vectors:

My“ = A1%y“ orthonormalized so that <y“

y’)

:5aﬂ

Now construct an N x N matrix U by listing the eigenvector columns:

1
Vi
Vs

c
Il

1

Also by construction U 'MU =

YN

2
Vi
Vs

Vu

»
Vs

yu

U—l

I 1
Vi )

2% 2%
Vi 32

oo
A0

0 A

0 0

1*
Y

N*
YN

N*
YN

= by construction U"'U =1



®)

Consider an extended system of masses and springs:

xi—l X. xi+1

Note : each mass coordinate 1s measured relative

to its equilibrium position x;
1l G, 1.8 2
L=T-V= Emle. —EkZ:(xi+1 — X, )
i=1 i=0

Note: In fact, we have N masses; x, andx, _,

will be treated using boundary conditions.
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Example of one dimensional system with fixed boundary values.


x,=0 and x,,, =0

From Euler - Lagrange equations :
mx, = k(x2 — 2x1)
mx, = k(x3 —2x, + xl)


Presenter
Presentation Notes
Review of detailed equations.


Matrix formulation --

Assume x,(f)=X.e

/Xl\ (2 -1 0 -- 0\ Xl\
X, -1 2 -1 -+ 0 X,
m | . . . . . .
— =] : : : :
k
X, e e =12 =1 || X,
\XN J o\t 0 -1 2/\XN J

Can solve as an eigenvalue problem —

(Why did we not have to transform the equations as
we did in the previous example?)



Because of its very regular form, this example also has an
algebraic solution --

From Euler - Lagrange equations :

mx; = k( X

Try : x]- (t) — Ae—za)t+lqaj

—2x;+Xx, ) with x, =0=x,_,

_0)2Ae—ia)t+iqaj zk(eiqa _2+e—iqa )Ae—ia)Hiqaj

m
» k
~ 0’ =—(2cos(qa)-2)
m
. .
. 4k (qaj Is this treatment cheating*
= ® =—SIn a. Yes
mn 2 b. No cheating, but we

are not done.



From Euler - Lagrange equations - - continued :
mx, = k(

X —2x, +x, ) with x, =0=x,,

ot +ioai 4k .
Iry: xj(t)er"“’”’q‘” = @’ =—sin (qaj
m 2

o 4k
Note that: x(f) = Be™ ™™ = @’ =—sin (q j
m

General solution :
X, (f) = ER( Ao iotiad | e—ia)t—iqaj)
Impose boundary conditions :
X, (t) = %(Ae + Be"“”) 0
Xy, (£) = SR( Jpiotiqa(N+1) | Be—ia)t—iqa(NH)): 0
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Boundary conditions.


Impose boundary conditions -- continued:
x, (1) = ER(Ae - Be‘l”t) 0
xo(£) =R ( Yo eriaa(NH) | p il zqa(N+1)) 0
—> B=-4
Xy (6)=R (Ae_i“” (eiqa(N“) — g eNH) )) =0
= sin(qa(N + 1)) =0
= qa(N+1)=vz where v=12---N

\Z/4

N +1

qa =



Recap -- solution for integer parameter v

x (1)="NR 2ide” ™ sin( Y j
N +1

2 4k . 7 VT
O =—S1n
Y m (AN+DJ

Note that non - trivial, unique values are
v=12,---N
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Full solution.


Examples w, = [— |sin )
m 2( N +1)
o "~ 7 7 I'6masses’ N=6
1.2 F 20 ' -
o | N=20
a)v 1t e @ ==
g
s
\/4k / m 08 L @ =
06 | ) L&) ]
04 k _ @
02 | @)
[:] ’ § § » § » §
0 0.5 1 1.5 qa 2 2.5 3
Note that solution form remains caorrect for N >«
. a
a)(qa) =+/4k / m|sin 99
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Presenter
Presentation Notes
Plot for example.    Now consider the case where N is very large.


For extended chain without boundaries:
O

Note that we

: g are assuming
Trys x;(0)=4de that all masses
and springs are

2 —lwt+iqa] __ lqa —liqa —lwt+1qaj . .
—"Ae ——(6 —2+e )Ae identical here.

'xz 1 x
From Euler-Lagrange equations:

mjc'jzk(xj+1—2xj+xj_1) for all x,

~° :£(2cos(qa)—2)
m
=’ :ﬁsm (qa

m 2
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Now consider the case where N is infinite so that there are an infinite number of solutions parameterized by qa as a continuous variable.


Plot of distinct values of w,(q)

4k | m

0 1 qa 2 3 -

Note that for N> «© , g becomes a continuous variable
within the range 0 <qa < =
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Distinct solutions occur for  qa in the range of 0-pi as shown in the plot.       


Next time — we will extend this analysis to more
complicated systems, including those with different
masses or different springs and those in two and
three dimensions.
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