PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Discussion on Lecture 17: Chap. 4 (F&W)

Normal Mode Analysis

1. Normal modes for extended one-dimensional
systems

2. Normal modes for 2 and 3 dimensional systems
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In this lecture, we will extend our normal mode analysis to more complicated systems,
including infinite periodic systems and beyond one dimension.



9/29/2021

PHYSICS

COLLOQUIUM

Part 1l

Theoretical and
Computational Projects

Professor Stephen Winter, representing theoretical
and computational research projects in the physics
department of Wake Forest University, include the
focus areas of his group and that of Professor Timeo
Thonhauser. Research efforts by Natalie Holzwarth
and William C. Kerr will also be discussed. This
presentation will complete the three part snapshot
of research opportunities at WFU Physics.

Discussion on
Colloquium Program

This second part of the colloguium will be devoted
to a discussion of the physics colloquium series,
exchanging ideas with the goal of improvement and
optimization. Bring your thoughts and ideas to the
discussion.

THURSDAY
L]

SEPTEMBER 30, 2021

Wake Forest University
Physics Department
Research Opportunities
and Discussion on
Colloguium Program

4:00 pm - Olin 101
Note: For additional information on the seminar or to
obtain the video conference link, contact

wiuphys@wfiedy

Reception at 3:30pm - Olin Lounge
*We encourage all to wander outside to the front
entrance or up to the Observatory Deck on the 3
floor to enjoy their refreshments.




Course schedule
(Preliminary schedule -- subject to frequent adjustment.)
Date F&W Reading | Topic Assignment Due
1 |Mon, 8/23/2021|(Chap. 1 Introduction #1 8/27/2021
2 |Wed, 8/25/2021 |Chap. 1 Scattering theory #2 8/30/2021
3 |Fri, 8/27/2021 ||[Chap. 1 Scattering theory
4 |Mon, 8/30/2021 |Chap. 1 Scattering theory #3 9/01/2021
5 |Wed, 9/01/2021 |Chap. 1 Summary of scattering theory #4 9/03/2021
6 |Fri, 9/03/2021 |Chap. 2 Non-inertial coordinate systems #5 9/06/2021
7 |Mon, 9/06/2021 |Chap. 3 Calculus of Variation #6 9/10/2021
8 |Wed, 9/08/2021 |Chap. 3 Calculus of Variation
9 |Fri, 9/10/2021 |Chap.3 & 6 Lagrangian Mechanics #7 9/13/2021
10|Mon, 9/13/2021 [Chap. 3 & 6 Lagrangian Mechanics #8 9/17/2021
11 |Wed, 9/15/2021 |Chap. 3 & 6  |Constants of the motion
12|Fri, 9/17/2021 |Chap.3 & 6 |Hamiltonian equations of motion #9 9/20/2021
13 |Mon, 9/20/2021 |Chap. 3 & 6 Liouville theorm #10 9/22/2021
14|Wed, 9/22/2021 (Chap. 3 & 6 Canonical transformations
15|Fri, 9/24/2021 |[Chap. 4 Small oscillations about equilibrium #11 9/27/2021
16 Mon, 9/27/2021||Chap. 4 Normal modes of vibration #12 9/29/2021
- 17 |Wed, 9/29/2021 |Chap. 4 Normal modes of more complicated systems |#13 10/04/2021
¢ [18|Fri, 10/01/2021 |Chap. 7 Motion of strings

This is the last lecture for Chap. 4. On Friday we will continue to discuss vibrations in
extended one dimensional motion as covered in Chap. 7.



PHY 711 -- Assignment #13

Sept. 29, 2021

Finish reading Chapter 4 in Fetter & Walecka.

=

1. Consider the system of 3 masses (m;=m>=m3=m) shown attached by elastic forces in the right triangular

configuration (with angles 45, 90, 45 deg) shown above with spring constants & and £". Find the normal modes of
small oscillations for this system. For numerical evaluation, you may assume that A=k
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Homework due Monday.



Your questions —

From Owen -- Ifa spring system were undergoing chaotic motion, would the
eigenvalue/eigenvector formalism we are discussing still apply? Can one know in
advance whether a system will behave chaotically or not?

Comment — In the present treatment we are focusing on the
linearized equations of motion. In this case, while the
motion can be complicated (superposition of several modes
for example), the chaotic behavior does not occur.
Mathematically, chaotic behavior may occur in the presence
of non-linear contributions. Physically, non-linear
contributions tend to be important when the system has
large deviations from equilibrium.
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Consider an extended system of masses and springs:

O

xi—l X xi+1
Note: each mass coordinate is measured relative

to its equilibrium position x;
1 ul ) 1 N 2
L=T-V= Emzxi _EkZ(le — X )
i=1 i=0

Note: In fact, we have N masses; x, andx,

will be treated using boundary conditions.
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Example of one dimensional system with fixed boundary values.



x,=0 and x,,, =0

From Euler - Lagrange equations :
mi, = k(x, —2x,)
mit, = k(x, —2x, +x,)
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Review of detailed equations.



From Euler - Lagrange equations :

mx; = k(xj+1 —2x; + xj_l) withx, =0=1x,,,

TI'y . xj (t) — Ae—iwt+iqaj

_a)2Ae—iwt+iqaj zﬁ(eiqa _2+e—iqa )Ae—ia)t+iqaj

m
k
—w* =—(2cos(ga)-2)
m
4k . a
= o’ =gin’| L2
m 2
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Review of solutions discussed on Wednesday.



From Euler - Lagrange equations - - continued :

mx, = k(x —2x,+ xj_l) with x, =0=x, ,

J J+l

R W ()
m 2
Note that: x (1) = Be™™ ™ — o’ = ﬁsinz(ﬂ)
m 2
General solution :
x,(£) = R(Ae a4 Berieriao )

Impose boundary conditions :

x,(t) = iR(Ae‘“‘” + Be‘i“”): 0

Xy, () = ER(Ae—iniqa(NH) + Be—iwt—iqa(NH)): 0
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Review of boundary conditions.



Impose boundary conditions -- continued:
x,(t) = ER(Ae*"“” + Be*"a”) =0
Xy, ()=R (Aeiia’”iqa(]v”) + Beiw’iqa(N”)) =0
= B=-4
Xy, (=N (Ae‘“‘” (eiqa(NH) — g eV )) =0
= sin(qa(N+ 1)) =0
= ga(N+1)=vzr where v=12---N

_ %4
N+1

qa
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Recap - - solution for integer parameter v

x,(t) =R| 2ide” sin( 5 j
’ N+1

2 4k .2 V7Z'
W =—SIN | ——
Y m (2(]\/ + 1)}

Note that non - trivial, unique values are
v=12,---N

PHY 711 Fall 2021 -- Lecture 17

Review of full solution.
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4k | . %7/
Examp|eS a)v = |[—|sin| ————
m 2(N +1)
’ . ’ ‘6masses’ ()
12 ¢ ‘20masses’ .
sin(x/2)
C()V 1t - @ =%
4k / m O.B L @ r
06 | ) & )
0a | P
02 } &
0 i L i i i i L
0 0.5 1 15 qaZ 25 3
Note that solution form remains cayyrect for N >«
) a
w(qa)=~4k/msin 99
9/29/2021 PHY 711 Fall 2021 -- Le lurg17

Plot for example. Now consider the case where N is very large.
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For extended chain without boundaries:

From Euler-Lagrange equationis:
Note that we
. are assuming
. —iot+iqq,
Try:  x,(f)=Ae™™ that all masses
I S B N and springs are
_a)er 1 t+lqdj :_(elqd _2+e 1qa)Ae 1 t+zqaj identical here.

mx; :k(xj+1—2xj+xj_1) forall x,

m
k
= —(ZCos(qa) - 2)
m
4k . a .
= o = Zgin?| 44 distinct values for 0< ga < 7
m
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Now consider the case where N is infinite so that there are an infinite number of solutions
parameterized by ga as a continuous varable.



a)l/

9/29/2021

4k /' m

1.

0.8+

0.6

0.4+

0.2+

Plot of frequencies in scaled units as a function qa

PHY 711 Fall 2021 -- Lecture 17

Distinct solutions occur for qga in the range of 0-pi as shown in the plot.
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Consider an infinite system of masses and springs now
with two kinds of masses:

( 0 00 f\
k ’\/\ \/G @ L/ /@\ \)\)\/ /m A /Q\/ }\)\/\/

i i i+1 y i+1 xi+2
Note: each mass coordinate is measured relative

to its equilibrium position x, =0, " =0,---
L=T-V

:%mixiz +%Miylz _%ki(xm Vi )2 _%ki(yi X )Z
i=0 i=0 i=0 i=0
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Now consider a slight modification of the previous example where masses are alternately
m and M with labels x and y.



L=T-V

:%m;xzz +%M;y3 _%k;‘,(xm — Vi )2 —%k;(yi X )2
Euler - Lagrange equations :
mx, =k(yj_1 —2xj+yj)
My, = k(xj —2y, +xj+1)

Trial solution : Note that 2qa is an unknown

x,(t)=Ae”"*%  parameter.
o —iot+i2qai Does this form seem
yj (t) = Be

reasonable?

mao® -2k k@fMW+Q(Aj_O
k(eizq“+1) Ma* -2k \B)
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In this case, we can analyze the system by considering different amplitudes for the m and
M masses. The resulting coupled equations can be written in matrix form.
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Comment on notation --

| ] H
N /\)\)\/‘\ /@\ /\)\)\/‘\ m X )9, Q\ /\)\)\/‘\ /m/\ M\/k/ A /Y\)\/‘\ J

i i i+1
Trial solution:
_ —iot+i2qaj
X; (t) = Ae

yj (t) — Be—iwt+i2qaj

9/29/2021 PHY 711 Fall 2021 --

y1+1 xi+2

Using 2qa as our
unknown parameter is a
convenient choice so that
we can easily relate our
solution to the m=M
case.

Lecture 17 17
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Note that for m=M,
(ma)2 —2k k(e‘iz"" + 1)](/1] 0 we obtain the same
i2qa 2 = normal modes as
k(e +1) Mo™ -2k \B before. Is this
Solutions : reassuring?
a. No
0. =£+£ik 12 N 12 N 2c08(29a) | Ves
B m M m- M mM
2 —
® m+M
_ o= galn

Plotting the solutions for the frequencies as a function of ga.
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Normal mode frequencies: Note that for
every qa, there
2=£+iik\/ 12 + 1 +2°°S(2qa) are 2 modes.

, 5
m M m M mM

21 2.0
1.8\

1.6

1.5 -
m=M 141 m#M

. 12

1.0

0.8

0.5 0.6

0.4
0 05 1 15 0 05 1 15
5 ga 5 5 ga 5

Plotting only distinct frequencies 0<qa < 72
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Eigenvectors:

For ga=0:
2k 2k
@ =0 W, =, —+—
m M
A 1 A 1
=N =N
B) 1 B), -1
V4
For =—:
qa 7
2k 2k
0 =.— @, =.—
M m
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Some details about the solutions.
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Potential in 2 and more dimensions

2
20V
~ 1
V('xﬁy)NV(xeq7yeq)+7(x_xeq) ax2
Xeg:Veq
e R N [
E - eq 2 - eq - eq
oy e OxOy e
-0.2H
-4+
Vixy) |
~ (0.6
=14
_I_
Iy 5 6
Ii3456_|0 I % 3 4
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Returning to the finite systems, consider equilibria in two dimensions as shown.
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Example — normal modes of a system with the
symmetry of an equilateral triangle

Degrees of freedom for
2-dimensional motion:
2N =6
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Specifically, we will consider 3 masses in an equilateral triangle configuration as shown.
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Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued

Potential contribution for spring 13:

1
Vs =Ek(|€13 T, _“1|_|E13|)2

2
zlk(gw '(“3 _u1)J
2 2 |€13|
2
1 (1 V3
u1 ~ _k(_(u)d _uxl)+_(uy3 _uyl)J

1.
4y :|€13|{EX+_Y
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We need to consider displacements from equilibrium in the x-y plane. Keeping only linear
terms in the displacements we wind up with a simple relationship to analyze.



Some details for spring 13:

2
(‘413 +u, _ul‘_‘gw‘)z = ((413 +u, )1/2 _Vm‘)

N
, 2 _ I 2000, ‘un‘
( 13+u13) ‘ 13‘( ' ‘613‘2 +‘£13‘2 Assume ‘u13‘<< V”‘

{;-u l;-u
||| T+ =2 | = |+ 1
‘ 13‘[ ‘613‘2 J ‘ 13‘ ‘413‘

of the leading term is
truein1, 2,and 3
dimensions.

2
12 2 [ /,-u Note that this analysis
:((5134?“13) _‘EB‘) :[MJ
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Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued

Potential contribution for spring 13:

1
Vs =Ek(|€13 T, _“1|_|E13|)2

2
zlk(gw '(“3 _u1)J
2 2 |€13|
2
1 (1 V3
u1 ~ _k(_(u)d _uxl)+_(uy3 _uyl)J

1.
4y :|€13|{EX+_Y
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We need to consider displacements from equilibrium in the x-y plane. Keeping only linear
terms in the displacements we wind up with a simple relationship to analyze.



Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued

Potential contributions: V =V, +V; +V,,

zlk{flz-(uzul)j2+lk[£13.(u3—ul)j2

2 12,5 2 |£.]
+lk[€23'(“3_“2)J2
2 1£,5]

~ k(o)

~2 x2 uxl

2
1 (1 V3
+5k[5(uﬂ —ux3)—7(uy2 —I/ly3)j
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Analyzing the 3 displacements for the equilateral triangle geometry, we find these

equations.

26
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Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued

5 1 1 1
i S S R B o £
-1 % —% 0 -LJ3 %.ﬁ
L3 1 1 B S E
m 1 4 2 4
1 1 3 3
Tﬁ 0 -3 0 0 -=
o -+1y3 L/3 0 o =l e
4 4
1 1 3 3
A A S S

PHY 711 Fall 2021 -- Lecture 17

X

X

Y

Y

y

27

1

2

x3

2

3

The results is a 6x6 matrix problem to find eigenvalues and eigenvectors.
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Example — normal modes of a system with the
symmetry of an equilateral triangle -- continued
With help from Maple
3
3
2
._ |2 K
W = 2
0
0
0
9/29/2021 PHY 711 Fall 2021 -- Lecture 17 28

Results from Maple. We have 6 eigenvalues and 3 non-zero modes for this case.

28



What can you say
about the 3 zero
frequency modes?

What can you say
about the 3 non-zero
frequency modes?

9/29/2021 PHY 711 Fall 2021 -- Lecture 17 29




3-dimensional periodic lattices
Example — face-centered-cubic unit cell (Al or Ni)

Diagram of Diagram of g-
atom positions space  1(q)

9/29/2021 PHY 711 Fall 2021 -- Lecture 17 30

Interesting extensions to a 3-dimensional crystalline system.



From: PRB 59 3395 (1999); Mishin et. al. v(q)

r [q00] X K [aq0) r [qaq] L r [q00] X K lag0] r lagal L
10 T = 10 T
o ~%o i " i
T T Ly A" = R
3 o N8y g 3 T, o 1
X / ; U\D"o\’\& . ;}/‘W@ &:DS) ssp ) Ly
H o . | 7 e '
F ol & ﬂsox\\i g LJ i \“\\\
!; i 0 o / t / ; \
> a4t 4 ;//D i XOS dq);r“ﬁ: > a4t f/‘:( K‘Q & g
&7 i ™8 7/ T K{M
e | N T i Q\ <
2t ) /7 21 gf \ 1
V4 W/
I A P, . . o i A
0.00 025 0.50 0.75 1.00 075 050 025 000 025 0.50 0.00 025 0.50 0.75 1.00 075 050 025 0.00 0.25 0.50
(a) q-> <-q q-> (b) q-> <-q q->
FIG. 2. Comparison of phonon-dispersion curves for Al (a) and
Ni (b) predicted by the present EAM potentials, with the experi-
mental values measured by neutron diffraction at 80 K (Al) and 298
K (Ni) (Ref. 33 for Al and Ref. 34 for Ni). The phonon frequencies
at point X were included in the fitting database with low weight.
Note that for each q, there are 3 frequencies.
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Results of normal modes from experiment and simulations for face centered cubic Al (left)
and Ni (right). Interestingly, the phonon frequency patterns are similar for these very
different materials.



Lattice vibrations for 3-dimensional lattice

Example: diamond lattice

e
Z(x+y+z)

9/29/2021 PHY 711 Fall 2021 -- Lecture 17

Ref: http://phycomp.technion.ac.il/~nika/diamond_structure.html

32

Another example — diamond.
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Atoms located at the positions :
R =R, +u’
Potential energy function near equilibriu :
al) a l a _ al. aZU . b _ b
U({R })~ U({Ro })+ > aZbl(R R, ) R'OR’ o) (R R, )
Define:
w_  OU
%R ‘R, o]
so that
U(R)~U, + L SutDou!
2 ab,j.k
a - da 1 - da 1 a a
L({uj,uj }):EZ’"“(“/ )2 U, _5 Zuij:uf:
a,j ab,j.k
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Some equations for extended systems.



i) Lm0, Sz
a,j

a,b,j.k

Equations of motion :
cq ab_ b
mi; = —ZDjkuk
b,k
Solution form:
a 1 a _—iwt+iq-R§
uj (t) = F Aj e 0
Details: Ry =1“+T where1* denotes
unique sites and

T denotes replicas

9/29/2021 PHY 711 Fall 2021 -- Lecture 17
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More euqations.
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Define:

a D‘?:eiq (T - ) i
VV]Ab (‘I) = Z ’ o
T mamb
Eigenvalue equations :

w4 =Y W), 4
b.k

In this equation the summation is only over
unique atomic sites.

= Find "dispersion curves" o(q)

9/29/2021 PHY 711 Fall 2021 -- Lecture 17
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More equations.
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B. P. Pandy and B.
Dayal, J. Phys. C.
Solid State Phys. 6
2943 (1973)
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Frequency (THz)

\
o \
A 'L K ¥
L1 L | | I
04 08IMOIO 06 02 00 02 04
[¢00] — -—[¢¢0] [eee] —
Reduced wavevector £

L

Figure 2, Phonon dispersion curves of diamond. Experimental points
et al (1963, 1967). & and O represent the longitudinal and transverse mu
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Results for diamond from simulation and experiment.

36



Examples of phonon spectra of two forms of boron nitride

Cubic structure Hexagonal structure
1600 Ny BN 1800 | | h-BN
_ 1400¢ Y . _ 1600
'.'E 1200+ 4 _.E 1400 é
< 1000F <1200 :
£ so0l . 21000 1
o o
2 600 | g, 800 — —
E £ 6001 -
4001 - 400k |
200H B 200+ .
0 ==
T K X 3 L AT M K )

Figure 1. Phonon dispersion curves {w"(q)) for cubic BN. The
inset Brillouin zone diagram was reprinted from Setyawan et al [7],
copyright (2010), with permission from Elsevier.

Figure 2. Phonon dispersion curves (w"(q)) for hexagonal BN.
The inset Brillouin zone diagram was reprinted from Setyawan ef al
[7], copyright (2010, with permission from Elsevier.
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