PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103

Notes for Lecture 19 - Chap. 7 (F&W)

Solutions of differential equations

- 1. The wave equation
- 2. Sturm-Liouville equation
- 3. Green's function solution methods

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

In this lecture, we follow the textbook to use the example of the one-dimensional wave equation to discuss ordinary differential equations more generally and develop some solution methods.

4	Mon, 8/30/2021	Chap. 1	Scattering theory	<u>#3</u>	9/01/2021
5	Wed, 9/01/2021	Chap. 1	Summary of scattering theory	<u>#4</u>	9/03/2021
6	Fri, 9/03/2021	Chap. 2	Non-inertial coordinate systems	<u>#5</u>	9/06/2021
7	Mon, 9/06/2021	Chap. 3	Calculus of Variation	<u>#6</u>	9/10/2021
8	Wed, 9/08/2021	Chap. 3	Calculus of Variation		
9	Fri, 9/10/2021	Chap. 3 & 6	Lagrangian Mechanics	<u>#7</u>	9/13/2021
10	Mon, 9/13/2021	Chap. 3 & 6	Lagrangian Mechanics	<u>#8</u>	9/17/2021
11	Wed, 9/15/2021	Chap. 3 & 6	Constants of the motion		
12	Fri, 9/17/2021	Chap. 3 & 6	Hamiltonian equations of motion	<u>#9</u>	9/20/2021
13	Mon, 9/20/2021	Chap. 3 & 6	Liouville theorm	<u>#10</u>	9/22/2021
14	Wed, 9/22/2021	Chap. 3 & 6	Canonical transformations		
15	Fri, 9/24/2021	Chap. 4	Small oscillations about equilibrium	<u>#11</u>	9/27/2021
16	Mon, 9/27/2021	Chap. 4	Normal modes of vibration	<u>#12</u>	9/29/2021
17	Wed, 9/29/2021	Chap. 4	Normal modes of more complicated systems	<u>#13</u>	10/04/202
18	Fri, 10/01/2021	Chap. 7	Motion of strings	<u>#14</u>	10/06/202
19	Mon, 10/04/2021	Chap. 7	Sturm-Liouville equations		
20	Wed, 10/06/2021	Chap.1-7	Review		
	Fri, 10/08/2021	No class	Fall break		
	Mon, 10/11/2021	No class	Take home exam		
	Wed, 10/13/2021	No class	Take home exam		
21	Fri, 10/15/2021	Chap. 7	Sturm-Liouville equations exam due		

Expected schedule for the next weeks...

One-dimensional wave equation representing longitudinal or transverse displacements as a function of x and t, an example of a partial differential equation --

For the displacement function, $\mu(x,t)$, the wave equation has the form:

$$\frac{\partial^2 \mu}{\partial t^2} - c^2 \frac{\partial^2 \mu}{\partial x^2} = 0$$

Note that for any function f(q) or g(q):

$$\mu(x,t) = f(x-ct) + g(x+ct)$$

satisfies the wave equation.

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

3

Review of wave equation.

The wave equation and related linear PDE's

One dimensional wave equation for $\mu(x,t)$:

$$\frac{\partial^2 \mu}{\partial t^2} - c^2 \frac{\partial^2 \mu}{\partial x^2} = 0 \quad \text{where } c^2 = \frac{\tau}{\sigma}$$

Generalization for spacially dependent tension and mass density plus an extra potential energy density:

$$\sigma(x)\frac{\partial^{2}\mu(x,t)}{\partial t^{2}} - \frac{\partial}{\partial x}\left(\tau(x)\frac{\partial\mu(x,t)}{\partial x}\right) + v(x)\mu(x,t) = 0$$

Factoring time and spatial variables:

$$\mu(x,t) = \phi(x) \cos(\omega t + \alpha)$$

Sturm-Liouville equation for spatial function $\phi(x)$:

$$-\frac{d}{dx}\left(\tau(x)\frac{d\phi(x)}{dx}\right) + v(x)\phi(x) = \omega^2\sigma(x)\phi(x)$$

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

Generalization of the wave equation. Equations in this class are separable in the time variables and the spatial variable satisfies a generalized eigenvalue problem of this form.

We will sometimes want to generalize even further with an "inhomogeneous" term such as an applied force.

PHY 711 Fall 2021 -- Lecture 19

5

10/4/2021

Examples of Sturm-Liouville eigenvalue equations --

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx} + v(x) - \lambda\sigma(x)\right)\varphi(x) = 0$$

Bessel functions: $0 \le x \le \infty$

$$\tau(x) = -x \qquad v(x) = x \qquad \sigma(x) = \frac{1}{x} \qquad \lambda = v^2 \qquad \varphi(x) = J_v(x)$$
and to function $x = 1 < x < 1$

Legendre functions: $-1 \le x \le 1$

endre functions:
$$-1 \le x \le 1$$

$$\tau(x) = -\left(1 - x^2\right) \quad v(x) = 0 \quad \sigma(x) = 1 \quad \lambda = l(l+1) \quad \varphi(x) = P_l(x)$$

Fourier functions: $0 \le x \le 1$

$$\tau(x) = 1$$
 $v(x) = 0$ $\sigma(x) = 1$ $\lambda = n^2 \pi^2$ $\varphi(x) = \sin(n\pi x)$

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

6

For now, we will focus on eigenvalues of the homogeneous equations.

Solution methods of Sturm-Liouville equations

(assume all functions and constants are real):
Homogenous problem:
$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)-\lambda\sigma(x)\right)\phi_0(x)=0$$

Inhomogenous problem:
$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)-\lambda\sigma(x)\right)\phi(x)=F(x)$$

Eigenfunctions:

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)\right)f_n(x)=\lambda_n\sigma(x)f_n(x)$$

Orthogonality of eigenfunctions: $\int_{a}^{b} \sigma(x) f_{n}(x) f_{m}(x) dx = \delta_{nm} N_{n},$

where
$$N_n \equiv \int_a^b \sigma(x) (f_n(x))^2 dx$$
.

Completeness of eigenfunctions:

$$\sigma(x) \sum_{n} \frac{f_n(x) f_n(x')}{N_n} = \delta(x - x')$$
PHY 711 Fall 2021 – Lecture 19

The eigenfunctions of these equations have very useful properties such as completeness.

Why all of the fuss about eigenvalues and eigenvectors?

- a. They are always necessary for solving differential equations
- b. Not all eigenfunctions have analytic forms.
- c. It is possible to solve a differential equation without the use of eigenfunctions.
- d. Eigenfunctions have some useful properties.

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

8

Comment of our observations and of eigenful for eigenful for the degeneration of
$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)\right)f_n(x) = \lambda_n\sigma(x)f_n(x)$$

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)\right)f_m(x) = \lambda_m\sigma(x)f_m(x)$$

$$f_m(x)\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)\right)f_n(x) - f_n(x)\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)\right)f_m(x)$$

$$= (\lambda_n - \lambda_m)\sigma(x)f_n(x)f_m(x)$$

$$-\frac{d}{dx}\left(f_m(x)\tau(x)\frac{df_n(x)}{dx}-f_n(x)\tau(x)\frac{df_m(x)}{dx}\right) = (\lambda_n - \lambda_m)\sigma(x)f_n(x)f_m(x)$$

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

9

Orthogonality of eigenfunctions.

Comment on orthogonality of eigenfunctions -- continued

$$-\frac{d}{dx}\left(f_m(x)\tau(x)\frac{df_n(x)}{dx}-f_n(x)\tau(x)\frac{df_m(x)}{dx}\right)=\left(\lambda_n-\lambda_m\right)\sigma(x)f_n(x)f_m(x)$$

Now consider integrating both sides of the equation in the interval $a \le x \le b$:

$$-\left(f_m(x)\tau(x)\frac{df_n(x)}{dx} - f_n(x)\tau(x)\frac{df_m(x)}{dx}\right)\Big|_a^b = \left(\lambda_n - \lambda_m\right)\int_a^b dx \sigma(x)f_n(x)f_m(x)$$

Vanishes for various boundary conditions at *x=a* and *x=b*

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

10

Orthogonality continued.

Comment on orthogonality of eigenfunctions -- continued

$$-\left(f_m(x)\tau(x)\frac{df_n(x)}{dx} - f_n(x)\tau(x)\frac{df_m(x)}{dx}\right)\Big|_a^b = \left(\lambda_n - \lambda_m\right)\int_a^b dx \sigma(x)f_n(x)f_m(x)$$

Possible boundary values for Sturm-Liouville equations:

1.
$$f_m(a) = f_m(b) = 0$$

2.
$$\tau(x) \frac{df_m(x)}{dx} \bigg|_a = \tau(x) \frac{df_m(x)}{dx} \bigg|_b = 0$$

$$3. f_m(a) = f_m(b)$$
 and $\frac{df_m(a)}{dx} = \frac{df_m(b)}{dx}$

In any of these cases, we can conclude that:

$$\int_{a}^{b} dx \sigma(x) f_{n}(x) f_{m}(x) = 0 \text{ for } \lambda_{n} \neq \lambda_{m}$$

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

11

Orthogonality continued.

Comment on "completeness"

It can be shown that for any reasonable function h(x), defined within the interval a < x < b, we can expand that function as a linear combination of the eigenfunctions $f_n(x)$

$$h(x) \approx \sum_{n} C_{n} f_{n}(x),$$

where
$$C_n = \frac{1}{N_n} \int_a^b \sigma(x') h(x') f_n(x') dx'.$$

These ideas lead to the notion that the set of eigenfunctions $f_n(x)$ form a ``complete" set in the sense of ``spanning" the space of all functions in the interval a < x < b, as summarized by the statement:

$$\sigma(x) \sum_{n} \frac{f_n(x) f_n(x')}{N_n} = \delta(x - x').$$

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

12

Notion of completeness.

$$h(x) \approx \sum_{n} C_{n} f_{n}(x),$$

where
$$C_n = \frac{1}{N_n} \int_a^b \sigma(x') h(x') f_n(x') dx'$$
.

Consider the squared error of the expansion:

$$\epsilon^{2} = \int_{a}^{b} dx \sigma(x) \left(h(x) - \sum_{n} C_{n} f_{n}(x) \right)^{2}$$

 ϵ^2 can be minimized:

$$\frac{\partial \epsilon^2}{\partial C_m} = 0 = -2 \int_a^b dx \sigma(x) \left(h(x) - \sum_n C_n f_n(x) \right) f_m(x)$$

$$\Rightarrow C_m = \frac{1}{N_m} \int_a^b dx \sigma(x) h(x) f_m(x)$$

10/4/202

PHY 711 Fall 2021 -- Lecture 19

13

Notion of completeness and practical applications.

Variational approximation to lowest eigenvalue

In general, there are several techniques to determine the eigenvalues λ_n and eigenfunctions $f_n(x)$. When it is not possible to find the "exact" functions, there are several powerful approximation techniques. For example, the lowest eigenvalue can be approximated by minimizing the function $\int_{\widetilde{h}} |c| \widetilde{f}_h \rangle$

 $\lambda_0 \le \frac{\left\langle \tilde{h} \left| S \right| \tilde{h} \right\rangle}{\left\langle \tilde{h} \left| \sigma \right| \tilde{h} \right\rangle}, \qquad S(x) = -\frac{d}{dx} \tau(x) \frac{d}{dx} + v(x)$

where $\tilde{h}(x)$ is a variable function which satisfies the correct boundary values. The "proof" of this inequality is based on the notion that $\tilde{h}(x)$ can in principle be expanded in terms of the (unknown) exact eigenfunctions $f_n(x)$: $\tilde{h}(x) = \sum_{r} C_n f_n(x)$, where the coefficients C_n can be

assumed to be real.

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

14

A very useful property of eigenfunctions related to homework problem

Estimation of the lowest eigenvalue – continued:

From the eigenfunction equation, we know that

$$S(x)\tilde{h}(x) = S(x)\sum_{n} C_{n}f_{n}(x) = \sum_{n} C_{n}\lambda_{n}\sigma(x)f_{n}(x).$$

It follows that:

$$\langle \tilde{h} | S | \tilde{h} \rangle = \int_a^b \tilde{h}(x) S(x) \tilde{h}(x) dx = \sum_n |C_n|^2 N_n \lambda_n.$$

It also follows that:

$$\langle \tilde{h} | \sigma | \tilde{h} \rangle = \int_a^b \tilde{h}(x) \sigma(x) \tilde{h}(x) dx = \sum_n |C_n|^2 N_n,$$

Therefore
$$\frac{\left\langle \tilde{h} | S | \tilde{h} \right\rangle}{\left\langle \tilde{h} | \sigma | \tilde{h} \right\rangle} = \frac{\sum_{n} |C_{n}|^{2} N_{n} \lambda_{n}}{\sum_{n} |C_{n}|^{2} N_{n}} \geq \lambda_{0}.$$

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

15

Proof of theorem continued.

Rayleigh-Ritz method of estimating the lowest eigenvalue

$$\lambda_0 \leq \frac{\left\langle \tilde{h} \left| S \right| \tilde{h} \right\rangle}{\left\langle \tilde{h} \left| \sigma \right| \tilde{h} \right\rangle},$$

Example:
$$-\frac{d^2}{dx^2}f_n(x) = \lambda_n f_n(x) \quad \text{with } f_n(0) = f_n(a) = 0$$

trial function
$$f_{\text{trial}}(x) = x(x-a)$$

Exact value of
$$\lambda_0 = \frac{\pi^2}{a^2} = \frac{9.869604404}{a^2}$$

Raleigh-Ritz estimate:
$$\frac{\left\langle x(a-x)\right| - \frac{d^2}{dx^2} \left| x(a-x)\right\rangle}{\left\langle x(a-x)\right| x(a-x)\right\rangle} = \frac{10}{a^2}$$

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

16

Example of the Rayleigh Ritz method.

A generally useful solution method -- Green's function approach

Suppose that we can find a Green's function defined as follows:

$$\left(-\frac{d}{dx} \tau(x) \frac{d}{dx} + v(x) - \lambda \sigma(x) \right) G_{\lambda}(x, x') = \delta \left(x - x' \right)$$
 Completeness of eigenfunctions:
$$\sigma(x) \sum_{n} \frac{f_{n}(x) f_{n}(x')}{N_{n}} = \delta \left(x - x' \right)$$

$$\sigma(x) \sum_{n} \frac{f_n(x) f_n(x')}{N_n} = \delta(x - x')$$

In terms of eigenfunctions:

In terms of eigenfunctions.
$$\left(-\frac{d}{dx} \tau(x) \frac{d}{dx} + v(x) - \lambda \sigma(x) \right) G_{\lambda}(x, x') = \sigma(x) \sum_{n} \frac{f_{n}(x) f_{n}(x')}{N_{n}}$$

$$\Rightarrow G_{\lambda}(x, x') = \sum_{n} \frac{f_{n}(x) f_{n}(x') / N_{n}}{\lambda_{n} - \lambda}$$

$$\frac{10/4/2021}{N_{n}}$$
10/4/2021 PHY 711 Fall 2021 – Lecture 19

The following slides present solution methods for differential equations involving the use of eigenvalues.

Solution to inhomogeneous problem by using Green's functions

Inhomogenous problem:

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx} + v(x) - \lambda\sigma(x)\right)\varphi(x) = F(x)$$

Green's function:

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)-\lambda\sigma(x)\right)G_{\lambda}(x,x')=\delta(x-x')$$

Formal solution:

$$\varphi_{\lambda}(x) = \varphi_{\lambda 0}(x) + \int_{0}^{L} G_{\lambda}(x, x') F(x') dx'$$
Solution to homogeneous problem

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

18

From a knowledge of the Green's function we can find solutions of related inhomogeneous equations.

Example Sturm-Liouville problem:

Example:
$$\tau(x) = 1$$
; $\sigma(x) = 1$; $\nu(x) = 0$; $\alpha = 0$ and $b = L$

$$\lambda = 1;$$
 $F(x) = F_0 \sin\left(\frac{\pi x}{L}\right)$

Inhomogenous equation:

$$\left(-\frac{d^2}{dx^2} - 1\right)\phi(x) = F_0 \sin\left(\frac{\pi x}{L}\right)$$

10/4/2021 PHY 711 Fall 2021 -- Lecture 19 19

Example.

Eigenvalue equation:

$$\left(-\frac{d^2}{dx^2}\right)f_n(x) = \lambda_n f_n(x)$$

Eigenfunctions

Eigenvalues:

$$f_n(x) = \sqrt{\frac{2}{L}} \sin\left(\frac{n\pi x}{L}\right)$$
 $\lambda_n = \left(\frac{n\pi}{L}\right)^2$

Completeness of eigenfunctions:

$$\sigma(x) \sum_{n} \frac{f_n(x) f_n(x')}{N_n} = \delta(x - x')$$

In this example:
$$\frac{2}{L} \sum_{n} \sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi x'}{L}\right) = \delta(x - x')$$

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

20

Solution using eigenfunctions.

Green's function:

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)-\lambda\sigma(x)\right)G_{\lambda}(x,x')=\delta(x-x')$$

Green's function for the example:

$$G(x,x') = \sum_{n} \frac{f_n(x)f_n(x')/N_n}{\lambda_n - \lambda} = \frac{2}{L} \sum_{n} \frac{\sin\left(\frac{n\pi x}{L}\right) \sin\left(\frac{n\pi x'}{L}\right)}{\left(\frac{n\pi}{L}\right)^2 - 1}$$

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

21

Continued.

$$\left(-\frac{d^2}{dx^2} - 1\right)\phi(x) = F_0 \sin\left(\frac{\pi x}{L}\right)$$

$$\phi(x) = \phi_0(x) + \int_0^L G(x, x') F_0 \sin\left(\frac{\pi x'}{L}\right) dx'$$

$$= \phi_0(x) + \frac{2}{L} \sum_n \left[\frac{\sin\left(\frac{n\pi x}{L}\right)}{\left(\frac{n\pi}{L}\right)^2 - 1} \int_0^L \sin\left(\frac{n\pi x'}{L}\right) F_0 \sin\left(\frac{\pi x'}{L}\right) dx' \right]$$

$$= \phi_0(x) + \frac{F_0}{\left(\frac{\pi}{L}\right)^2 - 1} \sin\left(\frac{\pi x}{L}\right)$$

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

22

In this case, the solution simplifies.

Alternate Green's function method:
$$G(x,x') = \frac{1}{W} g_a(x_{<}) g_B(x_{>})$$

$$\left(-\frac{d^2}{dx^2} - 1\right) g_i(x) = 0 \qquad \Rightarrow g_a(x) = \sin(x); \qquad g_b(x) = \sin(L-x);$$

$$W = g_b(x) \frac{dg_a(x)}{dx} - g_a(x) \frac{dg_b(x)}{dx} = \sin(L-x) \cos(x) + \sin(x) \cos(L-x)$$

$$= \sin(L)$$

$$\phi(x) = \phi_0(x) + \frac{\sin(L-x)}{\sin(L)} \int_0^x \sin(x') F_0 \sin\left(\frac{\pi x'}{L}\right) dx'$$

$$+ \frac{\sin(x)}{\sin(L)} \int_x^L \sin(L-x') F_0 \sin\left(\frac{\pi x'}{L}\right) dx'$$

$$\phi(x) = \phi_0(x) + \frac{F_0}{\left(\frac{\pi}{L}\right)^2 - 1} \sin\left(\frac{\pi x}{L}\right)$$
10/4/2021 PHY 711 Fall 2021 – Lecture 19

Another method of finding a Green's function.

General method of constructing Green's functions using homogeneous solution

Green's function:

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx}+v(x)-\lambda\sigma(x)\right)G_{\lambda}(x,x')=\delta(x-x')$$

Two homogeneous solutions

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx} + v(x) - \lambda\sigma(x)\right)g_i(x) = 0 \quad \text{for} \quad i = a, b$$

Let

$$G_{\lambda}(x,x') = \frac{1}{W} g_a(x_{\scriptscriptstyle <}) g_b(x_{\scriptscriptstyle >})$$

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

24

Green's function based on homogeneous solutions (not eigenfuntions).

For
$$\epsilon \to 0$$
:
$$\int_{x'-\epsilon}^{x'+\epsilon} dx \left(-\frac{d}{dx} \tau(x) \frac{d}{dx} + v(x) - \lambda \sigma(x) \right) G_{\lambda}(x, x') = \int_{x'-\epsilon}^{x'+\epsilon} dx \delta(x - x')$$

$$\int_{x'-\epsilon}^{x'+\epsilon} dx \left(-\frac{d}{dx} \tau(x) \frac{d}{dx} \right) \frac{1}{W} g_a(x_{<}) g_b(x_{>}) = 1$$

$$-\frac{\tau(x)}{W} \left(\frac{d}{dx} g_a(x_{<}) g_b(x_{>}) \right) \Big]_{x'-\epsilon}^{x'+\epsilon} = \frac{\tau(x')}{W} \left(g_a(x') \frac{d}{dx} g_b(x') - g_b(x') \frac{d}{dx} g_a(x') \right)$$

$$\Rightarrow W = \tau(x') \left(g_a(x') \frac{d}{dx} g_b(x') - g_b(x') \frac{d}{dx} g_a(x') \right)$$
Note -- W (Wronskian) is constant, since $\frac{dW}{dx'} = 0$.
$$\Rightarrow \text{Useful Green's function construction in one dimension:}$$

$$G_{\lambda}(x, x') = \frac{1}{W} g_a(x_{<}) g_b(x_{>})$$
10/4/2021 PHY 711 Fall 2021 - Lecture 19

Some details.

$$\left(-\frac{d}{dx}\tau(x)\frac{d}{dx} + v(x) - \lambda\sigma(x)\right)\varphi(x) = F(x)$$

Green's function solution:

$$\varphi_{\lambda}(x) = \varphi_{\lambda 0}(x) + \int_{x_{l}}^{x_{u}} G_{\lambda}(x, x') F(x') dx'$$

$$= \varphi_{\lambda 0}(x) + \frac{g_{b}(x)}{W} \int_{x_{l}}^{x} g_{a}(x') F(x') dx' + \frac{g_{a}(x)}{W} \int_{x}^{x_{u}} g_{b}(x') F(x') dx'$$

10/4/2021

PHY 711 Fall 2021 -- Lecture 19

26

More details. To be continued.