PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes for Lecture 19 — Chap. 7 (F&W)

Solutions of differential equations

The wave equation

—

2. Sturm-Liouville equation

3. Green’s function solution methods

10/4/2021 PHY 711 Fall 2021 -- Lecture 19

In this lecture, we follow the textbook to use the example of the one-dimensional wave

equation to discuss ordinary differential equations more generally and develop some
solution methods.



[4 [Mon, 8/30/2021 [Chap. 1 [Scattering theory EX) lo/01/2021
5 [Wed, 9/01/2021 [Chap. 1 [Summary of scattering theory (4 9/03/2021
6 [Fri, 9/03/2021 |Chap.2 [Non-inertial coordinate systems [#s 9/06/2021
[7 [Mon. 9/06/2021 [Chap. 3 [Calculus of Variation 6 9/10/2021
8 [Wed, 9/08/2021 |Chap. 3 |Calculus of Variation | |

lo [Fri,9/10/2021 [Chap.3 &6 |[Lagrangian Mechanics 7 o/13/2021
[10[Mon, 9/13/2021 [Chap. 3 &6 [Lagrangian Mechanics [us lo/17/2021
[11]Wed, 9/15/2021 [Chap.3 &6 ||Counstants of the motion | |

[12]Fri, 9/17/2021 [Chap.3 &6 |Hamiltonian equations of motion 1o [9/20/2021
[13[Mon, 9/20/2021 |Chap.3 &6  [[Liouville theorm 210 lo/22/2021
|14 |Wed, 9/22/2021 ‘Chap. 3&6 |Can0nical transformations | |

[15[Fri, 9/24/2021  [Chap. 4 [Small oscillations about equilibrium 1L lo/27/2021
[16]Mon, 9/27/2021 |Chap. 4 [Normal modes of vibration 12 9/29/2021
17(Wed, 9/29/2021 |Chap. 4 Normal modes of more complicated systems |#13 10/04/2021
18||Fri, 10/01/2021 |Chap. 7 Motion of strings #14 10/06/2021

»|19 [Mon, 10/04/2021 [Chap. 7

|Sturm-Liouville equations

[20[Wed, 10/06/2021 [Chap.1-7

|Review

| [Fri, 10/08/2021 |No class

[Fall break

| [Mon, 10/11/2021 [No class

[ [Wed, 10/13/2021 [No class

|Take home exam

[24[[Fri, 10/15/2021 [Chap. 7

|
|
|Take home exam |
|
|

|Sturm-Liouville equations -- exam due

10/4/2021
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Expected schedule for the next weeks...




One-dimensional wave equation
representing longitudinal or transverse displacements
as a function of x and t, an example of a partial
differential equation --

For the displacement function, u(x,), the wave equation has the form:
2 2
Note that for any function f(g) or g(q):
uxy) = f(x—ct)+gx+ct)
satisfies the wave equation.
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Review of wave equation.



The wave equation and related linear PDE’s

One dimensional wave equation for u(x,?):

2
8_,21 cza'u 0 wherec’="
ot o’ o
Generalization for spacially dependent tension and mass density plus

an extra potential energy density:

o) LD ‘g(f h) a( (x )a“( t)}v(x)ﬂ(x,r):o

Factoring time and spatial variables:
H(x,t)=¢(x) cos(awt + )

Sturm-Liouville equation for spatial function @(x):

( x )d¢( )j+v(x>¢(x> - P (x)P(x)
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Generalization of the wave equation. Equations in this class are separable in the time
variables and the spatial variable satisfies a generalized eigenvalue problem of this form.



Linear second-order ordinary differential equations
Sturm-Liouville equations

Inhomogenous problem: [—d— r(x)— +v(x)— ﬂ,a(x) o(x) = F(x)

\/

given functions applied

force

When applicable, it is
assumed that the form of
the applied force is known.

solution to be
determined

Homogenous problem: F(x)=0
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We will sometimes want to generalize even further with an “inhomogeneous” term such as
an applied force.



Examples of Sturm-Liouville eigenvalue equations --

(—%T(x)% +v(x)— la(x))(o(x) =0

Bessel functions: 0<x <o
7(x)=—x v(x)=x o(x)= 1 A=v p(x)=J,(x)
X

Legendre functions: —-1<x<1
r(x)z—(l—xz) v(x)=0 o(x)=1 A=II+1) @(x)=PF(x)
Fourier functions: 0<x<1

(x)=1 v(x)=0 o(x)=1 A=n’7" @(x)=sin(nzx)
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For now, we will focus on eigenvalues of the homogeneous equations.



Solution methods of Sturm-Liouville equations
(assume all functions dgonstagts are real):
Homogenous problem : a(— —7(x)—+v(x)— la(x)jgzﬁo (x)=0
dx dx
d d
Inhomogenous problem : (— —7(x)—+v(x)— la(x)jgﬁ(x) =F(x)
dx dx
Eigenfunctions :
d d
(— —r(x)—+ V(X)jfn (x)=4,0(x)f,(x)
dx dx
b
Orthogonality of eigenfunctions: j ox)f (x)f, (x)dx=6N,,

where N, = [ o (x)(f,(x)dx.
Completeness of eigenfunctions:

o(x) L LD 5 (x-w)
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The eigenfunctions of these equations have very useful properties such as completeness.



Why all of the fuss about eigenvalues and eigenvectors?

a.

b.
C.

10/4/2021

They are always necessary for solving differential
equations

Not all eigenfunctions have analytic forms.

It is possible to solve a differential equation without
the use of eigenfunctions.

Eigenfunctions have some useful properties.
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Comment on orthogonality of eigenfunctions

(‘di“x)i + v(x)Jf,,(X) = 4,0(x)1,(x)

Ix dx

(e )| 1.0 = 011,09
dx dx

fm(X)(—%r(x)%+V(X)jfn(x)—ﬂ(ﬂ[—%f(x)%w(x)jfm(x)
— (4~ 2 )o@ £, £, (3)

d df,(x) df, ()
dx(fm<x>r(x> R ACL R

j:( A= 20 £,(6) £, (%)
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Orthogonality of eigenfunctions.



Comment on orthogonality of eigenfunctions -- continued

+

Vanishes for various boundary conditions
at x=a and x=b
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——(f @) T f 2y Lot (x)j (4 = 2,) 0 ()£, (31, ()

Now consider integrating both sides of the equation in the interval
a<x<bh:

(f @ L2 - 1 (e L) (x)j ~ (4, - 2,) [ dso(x) £, (x) £, ()

Orthogonality continued.

10



Comment on orthogonality of eigenfunctions -- continued

df (x)_f( ) ( )d](m(x)j (gn_,im)jidxa(x)ﬁ,(x)fm(x)

(f (x)z(x)
Possible boundary values for Sturm-Liouville equations:
1. £ (a)=f (b)=0

df, (x
2. 1) LoD g Pul)
dx

a

a

4.0 _

df,,, (a) _df,(0)
dx dx

3.f.(a)= f.(b) and

In any of these cases, we can conclude that:

j dxo(x) f,(x) f, (x) =0 for A # A
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Orthogonality continued.
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Comment on “completeness”
It can be shown that for any reasonable function h(x),
defined within the interval a < x <b, we can expand that
function as a linear combination of the eigenfunctions f,(x)

h(x)~ Y C,f.(x),

where C :Ni” j:’a(x')h(x') £(x)dx.

These ideas lead to the notion that the set of
eigenfunctions f,(x) form a ““'complete" set in the sense
of “'spanning" the space of all functions in the interval
a < x <b, as summarized by the statement:

o) L (x])\ff 0D _ 5 x).

n
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Notion of completeness.
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Comment on “completeness” -- continued
h(x)~ Y C, [ (x),
1 eo
where €, =—— j o (xXYh(x") [, (x")dx".

Consider the squared error of the expansion:

b 2
et = j dxa(x)[h(x) -yc, fn(x)j
¢’ can be minimized:

aag =0=-2 dxa(x)(h(x)—Z%(x)}fm(x)

m

=C = Nijzdxa(x)h(x)fm (%)

m
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Notion of completeness and practical applications.
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Variational approximation to lowest eigenvalue
In general, there are several techniques to determine the
eigenvalues 4, and eigenfunctions £ (x). When it is not
possible to find the ““exact" functions, there are several
powerful approximation techniques. For example, the
lowest eigenvalue can be approximated by minimizing the
function <h‘S‘h> S(x) = —ir(x)i—l—v(x)
ﬂo <=, dx dx
<h o] h>

where #(x) is a variable function which satisfies the
correct boundary values.  The ““proof" of this inequality is
based on the notion that #(x) can in principle be expanded
in terms of the (unknown) exact eigenfunctions f,(x):
h(x)= ZCn f.(x), where the coefficients C, can be

assumed to be real.

A very useful property of eigenfunctions related to homework problem



Estimation of the lowest eigenvalue — continued:

From the eigenfunction equation, we know that

It follows that:
(B|S|)= [ h(x)S)h(x)dx=Y(C, | N, 4,
It also follows that: !

(hlo|i) = [ hAxoh(xd =Y [C,F N,

n

(7ls|) _ZICn ’ N4,

(hloli) SCEN, =
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Therefore

S(X)h(x)=S(x)Y.C,f,(x) = 2 C,2,0(x) f,(x).

Proof of theorem continued.

15



Rayleigh-Ritz method of estimating the lowest eigenvalue

(h|S|7)
ﬁo Sﬁ,
(hlo]h)

Example: —j—; £()=Af.(x) withf,(0)=f.(a)=0

trial function f, (x)=x(x—a)

7°  9.869604404

Exact value of 4, = —= =
a a

dZ
x(a—x) iy x(a—x)
Raleigh-Ritz estimate: < | dx® | > = 10

(x(a=x)x(a-x)) &
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Example of the Rayleigh Ritz method.



A generally useful solution method -- Green’s function approach

Suppose that we can find a Green's function defined as follows:

d d N o
(_ET(X)E +v(x) - /Ia(x)le (x,x") = 5(x X )
Completeness of eigenfunctions:
o (x) L LDLED_5(x-x)

n

Recall:

In terms of eigenfunctions:
_d L _ N — S, (0.1, ()
( T () la(x)le (x,x") G(x)zn: v

=G, (x,x)=) /s (x)/{n(_x/;) /N,
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The following slides present solution methods for differential equations involving the use of
eigenvalues.



Solution to inhomogeneous problem by using Green’s
functions

Inhomogenous problem:
[—irmi v(x) - za(x)jco(x) = F(x)
dx dx
Green's function :
d d
— = 7(x)— +v(x) - Ao(x) |G, (x,x") = S(x — x)
dx dx
Formal solution:

P =)+ [ G, Cex)F ()

Solution to homogeneous problem
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From a knowledge of the Green’s function we can find solutions of related inhomogeneous

equations.

18



Example Sturm-Liouville problem:

Example: 7(x)=1 o)=L v(x)=0; a=0 and b=1L

A=1; F(x)=F, sin(%)

Inhomogenous equation :

(— 572 - ljgé(x) =F, sin(%}
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Example.
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Eigenvalue equation:

(— %]fn(x) A1)
X

Eigenfunctions Eigenvalues :
2

nmx nw

X —sm A =|—
f(x)= ( 7 j " ( 7 j

Completeness of eigenfunctions :

zf (x)f (x") 5(x x)
In this example: — Z sm( ) sin( n7sz J =5(x —x')

Solution using eigenfunctions.

20



Green's function :
d d
——7(x)—+v(x)—Ao(x) |G, (x,x") = 5(x — x’)
dx dx

Green's function for the example:

C(nm) . naox!'
e LGN, 2 Sm( L )Sm( L j
Gox)=2, P) :ZZ 2
n - n (Mj .

10/4/2021 PHY 711 Fall 2021 -- Lecture 19

21

Continued.
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[— j—z - 1j¢(x) = F, sin(%)

7tX
#(x) = ¢, (x) + j G(x,x')F, sin [T)d

nm
sm(L ¢ (nm !
=¢,(x)+ —Z 5 I sin( }FO sm[—jdx’
L (nz 40 L
L
=g, (x)+ sin(EJ
P L
—| -1
L
10/4/2021 PHY 711 Fall 2021 -- Lecture 19

Using Green's function to solve inhomogenous equation :

22

In this case, the solution simplifies.

22



Alternate Green's function method :

G(x,x') = % g.(x.)g,(x.)

P(x) =g, (x)+ sm( x)j51n(x )F, sm( jdx
| Sin (X)

sm(

j sin(L —x")F, sm( jdx

#(x) = (x) + lsin(%}

T
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[_j_z_ngi(x)zo = gu(x)=sin(x); g,,(x)zsin(L—x);
w=g, (x)-dgc; (x) - &, (x)dgdb_(x) = sin(L — x)cos(x)+ sin(x)COS(L - x)
X x
= sin(L)

Another method of finding a Green’s function.
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General method of constructing Green’s functions using
homogeneous solution

Green's function :

(—if(X)i +v(x)— ﬂ’a(x)jG/l (x,x') = 5(x —x')
dx dx

Two homogeneous solutions
d d :
——7(x)—+v(x)-Ao(x) |g,(x)=0 for i=
dx dx
Let

G, (x,x) = %ga ()2, (x.)

10/4/2021 PHY 711 Fall 2021 -- Lecture 19

a,b

24

Green'’s function based on homogeneous solutions (not eigenfuntions).

24



For ¢ —0:

X'+e X'+e

I dxﬁ—%r(x)%+v(x)—xlcf(x)le(x,x')= j dxS(x—x")

x'—e x'—e

d d)1
| dx[—ar(ma]wga(a)gb(a)—1

_7(x)

(x) ( d
w

' i n_ v i '
o (ga(X)dxgb(x) gh(X)dxga(x )j

gu (x< )gb (x>)j:|

x'—€

W= r(x')(ga(x')%gm') —gb(x%ga(x'ﬂ

Note -- W (Wronskian) is constant, since o =0.
X

— Useful Green's function construction in one dimension:

G, (x,x") = %ga (x.)g,(x.)

10/4/2021 PHY 711 Fall 2021 -- Lecture 19 25

Some details.

25



(_ir(x)i +v(x) — ﬂG(X)j(P(X) = F(x)
dx dx

Green's function solution:

?,(x) =@,(x) + j G, (x,x"\F(x")dx'

X

=)+ £20 jg e S P
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More details. To be continued.
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