PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes on Lecture 21 — Chap. 7 (F&W)

Solutions of differential equations

1. Green’s function solution methods based on
eigenfunction expansions

2. Green’s function solution methods based on
solutions of the homogeneous equations
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In this lecture, we will continue our discussion of one dimensional ordinary differential
equations.



9 |Fri, 9/10/2021 ||Chap.3 & 6 |Lagrangian Mechanics #7 9/13/2021
10 Mon, 9/13/2021 |Chap.3 & 6 ||[Lagrangian Mechanics #8 9/17/2021
11 |Wed, 9/15/2021 |Chap.3 & 6  |Constants of the motion
12 Fri, 9/17/2021 |Chap.3 & 6 ||Hamiltonian equations of motion #9 9/20/2021
13 Mon, 9/20/2021 |Chap.3 & 6 ||Liouville theorm #10 9/22/2021
14 |Wed, 9/22/2021 |Chap.3 & 6  |Canonical transformations
15|Fri, 9/24/2021  ||Chap. 4 Small oscillations about equilibrium #11 9/27/2021
16 Mon, 9/27/2021 |Chap. 4 Normal modes of vibration #12 9/29/2021
17|Wed, 9/29/2021 ||Chap. 4 Normal modes of more complicated systems||#13 10/04/2021
18 |Fri, 10/01/2021 ||Chap. 7 Motion of strings #14 10/06/2021
19 Mon, 10/04/2021 |Chap. 7 Sturm-Liouville equations
20 Wed, 10/06/2021 (Chap.1-7 Review

Fri, 10/08/2021 |No class Fall break

Mon, 10/11/2021 |No class Take home exam

Wed, 10/13/2021 |No class Take home exam

*1 Fri, 10/15/2021 ||Chap. 7 Sturm-Liouville equations -- exam due

‘22 Mon, 10/18/2021|Chap. 7 Fourier and other transform methods
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The schedule continues to cover material in Chap. 7



Review — Sturm-Liouville equations defined over a range of x.

Homogenous problem: (—i 7(x) 4 +v(x)— /10'(x)j @,(x)=0
dx dx

Inhomogenous problem: [—i 7(x) 4 +v(x)— lo(x)j o(x)=F(x)
dx dx
Eigenfunctions:

(’diﬂx)i + v(xﬂfn(x) = 4,0(x)f,(x)
X dx

Note that, because Sturm-Liouville operator is Hermitian,
the eigenvalues are real and the eigenfunctions are
orthogonal. In the last lecture, we argued that the
eigenfunctions form a “complete” set over the range of x
defined for the particular system.
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Review of the class problems considered.



Eigenvalues and eigenfunctions of Sturm-Liouville equations
In the domain a<x<bh:

d d
(——T(X)— + V(X))fn (x) = 4,0(x) f,(x)
dx dx
Alternative boundary conditions; 1. f (a)=f, (b)=0

=0
df, (@) _ df,(b)
dx dx

or 2. r(x)% () dfg)(cx)

a

or3. f (a)=f, (b) and

Properties:

Eigenvalues A are real

Eigenfunctions are orthogonal: Jba(x) f,(x)f, (x)dx=06, N,

where N, = [ o(x)(f,(x))*dx.
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General properties.



Variation approximation to lowest eigenvalue
In general, there are several techniques to determine the
eigenvalues 4, and eigenfunctions £ (x). When it is not
possible to find the ““exact" functions, there are several
powerful approximation techniques. For example, the
lowest eigenvalue can be approximated by minimizing the
function <h‘S‘h> S(x) = —ir(x)i—l—v(x)
ﬂo <=, dx dx
<h o] h>

where #(x) is a variable function which satisfies the
correct boundary values.  The ““proof" of this inequality is
based on the notion that #(x) can in principle be expanded
in terms of the (unknown) exact eigenfunctions f,(x):
h(x)= ZCn f.(x), where the coefficients C, can be

assumed to be real.

Comment on the Raleigh-Ritz approximation for the lowest eigenvalues.



Estimation of the lowest eigenvalue — continued:

From the eigenfunction equation, we know that

S(X)h(x)=S(x)Y.C,f,(x) = 2 C,2,0(x) f,(x).

It follows that:

(h|S|i)= jb H)Sh(x)dx =Y IC, | N,A,.

It also follows that:
(hlolh)=| "o hxdc=3C, [ N,

(is) ZnZICn N4,

(iloli) SN,
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Therefore

Proof of the Rayleigh-Ritz theorem.



Rayleigh-Ritz method of estimating the lowest eigenvalue

(h|S|7)
ﬁo Sﬁ,
(hlo]h)

Example: —j—; £()=Af.(x) withf,(0)=f.(a)=0

trial function f, (x)=x(x—a)

7°  9.869604404

Exact value of 4, = —= =
a a

dZ
x(a—x) iy x(a—x)
Raleigh-Ritz estimate: < | dx® | > = 10

(x(a=x)x(a-x)) &
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Review of example from last lecture.



Rayleigh-Ritz method of estimating the lowest eigenvalue

1< <h‘S‘h> Another example — this time
0~ <;}‘GV}> ’ with a variable parameter
d’f,(x .
Example: - % +GXf(x)=A,f,(x)  withf, (-0)= f,(0)=0
X
trial function f. (x)= e
18| 7.
Raleigh-Ritz estimate: M =g+ < =1..(2)
14 <.fma1 Ul.fmal> 4g
ﬂ“trial (g) -
— = 12
NG
11
1.0+ ; : : ‘ | | | |
0.3 0.4 05 06 0.7 0.8 0.9 1.0
g/ VG Note that for differential equation of the
1 Schoedinger equation of the harmonic oscillator
8 =7VG  A,(8)=VG G- _2m g lo
2 T e T b = 0=
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Another example.



Recap -- Rayleigh-Ritz method of estimating the lowest eigenvalue

Example from Schroedinger equation for one-dimensional harmonic oscillator:

I ACY +%ma)2x2fn (X)=E,f,(x)  withf (=0) = f, () =0

2m  dx’
Trial function f, ., (x)= e
sl 7. 2 2.2 /22
Raleigh-Ritz estimate: M:h— +M =F. .(g)
< trial O-|f;n'a1> 2m 4g
g, :mTa’ Etrial(go):%ha) @ Exact answer

Do you think that there is a reason for getting the correct
answer from this method?

a. Chance only

b. Skill
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In this case, the minimization process yield’s the exact answer.



Solution to inhomogeneous problem by using Green’s
functions

Inhomogenous problem:
[—irmi v(x) - za(x)jco(x) = F(x)
dx dx
Green's function :
d d
— = 7(x)— +v(x) - Ao(x) |G, (x,x") = S(x — x)
dx dx
Formal solution:

P =)+ [ G, (r.x)F ()

Solution to homogeneous problem
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From a knowledge of the Green’s function we can find solutions of related inhomogeneous

equations.

10



Formal solution:

0,(x)= 0,0 (x) + [ G, (x,x)F (x )’

Solution to homogeneous problem

Your question -- On slide 17, what is the homogeneous
' ' ?
equation psi_0(x)’ Homogenous problem:

[—%r(x)%w(x)—ﬂa(x)jcoﬂ()(x)=o

In this lecture, we will discuss several methods of
finding this Green’s function. This topic will also
appear in PHY 712
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Your question -- How do we arrive at the formal solution on
slide 117

Formal solution:

0, (X) =@, (x)+ jG/l (o, x)F(x")dx'

Note that this form satisfies the inhomogenous equation

Define S(x)= _4 r(x)i +v(x)—Ao(x)
dx dx
S(x)@,(x) =S(x)@,,(x)+S (X)I G(x, x ) (x")dx'

S(x)p,(x)= 0 +ji O(x—x"VF(x"dx'=F(x)
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12



Suppose that we can find a Green's function defined as follows:

d d n _ — '
(_ym?vm —zo(x)jca(x,x )=5(x-x')

Completeness of eigenfunctions:

o (x) L LD 5(x- )

n

Recall:

In terms of eigenfunctions:

(—%r(x)% +v(x)— la(x)J G,(x,x") = O'(X)Zn: ﬂ—(x]){" )

n

=G, (x,x")= Z f”(x)f(_xlg /N, By construction

10/15/2021 PHY 711 Fall 2021 -- Lecture 21 13

The following slides present solution methods for differential equations involving the use of
eigenvalues.



Example Sturm-Liouville problem:
Example: (x)=1, ox)=1, v(x)=0;, a=0 and b=L
A=1; F(x)=F,sin (%}

Inhomogenous equation:

(—5722 - 1] @(x) = F,sin (%j
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Example.

14



Eigenvalue equation:
d2
-—— |f,(x) =4 f (x
( dxz]fn( )= 4,1, (x)
Eigenfunctions Eigenvalues :
2
nmx nmw
X —sm A =] —
f(x)= ( 7 j " ( 7 j

Completeness of eigenfunctions :

zf(x)f(x) 5(x x)

}’l
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In this example: — Z sm( ) sin( n7sz J =5(x —x')

Solution using eigenfunctions appropriate for this example.

15



Green's function :
d d
——7(x)—+v(x)—Ao(x) |G, (x,x") = 5(x — x’)
dx dx

Green's function for the example:

C(nm) . naox!'
e LGN, 2 Sm( L )Sm( L j
Gox)=2, P) :ZZ 2
n - n (Mj .
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Continued.
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Using Green's function to solve inhomogenous equation:
d 2

: zx'")
P(x) = g, (x) + j G(x,x")F, sm( - j

= (00(X)+ n ( sz lgsm(’mx jFOsin(ﬂijdx'
=@, (x)+ [ jg [%)
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2
(—d— — IJ @o(x) = F,sin [%j with boundary values @(0)=¢(L)=0

In this case, the solution simplifies.

17



Alternate Green's function method not based on eigenvalues

but on solutions to the homogeneous problem:

G(x,x')z%ga()@)gb()g) for 0<x<L

dx
= sin(L)

P(x) =@, (x) + Slrsll(n#@ﬂjsm(x')F sm( jdx

s1n(x)

j sin(L —x")F, sm( jdx

(——2—1]gi(x) =0 =g, (x)=sin(x); g, (x)=sin(L-x);

W= g, ()8 g () %) (1 - ) cos () + sin(x)cos (L - )

sin(L) |
F . (7x) (Actually the algebra is painful)
— 40 e .
) =) 7Y Sm( L j But, hurray! Same result as before.
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Another method of finding a Green’s function.
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More details on the general method of constructing Green’s
functions using homogeneous solution

Green's function :

(—if(X)i +v(x)— ﬂ’a(x)jG/l (x,x') = 5(x —x')
dx dx

Two homogeneous solutions
(—ir(x)i +v(x)— la(x)]gi(x) =0 for i=a,b
dx dx
Let
L
G, (x,x") = 7 % (X8 (x.)
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Green'’s function based on homogeneous solutions (not eigenfuntions).
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For ¢ —0:

X'+e X'+e

I dxﬁ—%r(x)%+v(x)—xlcf(x)le(x,x')= j dxS(x—x")

x'—e x'—e

d d)1
| dx[—ar(ma]wga(a)gb(a)—1

_7(x)

(x) ( d
w

' i n_ v i '
o (ga(X)dxgb(x) gh(X)dxga(x )j

gu (x< )gb (x>)j:|

x'—€

W= r(x')(ga(x')%gm') —gb(x%ga(x'ﬂ

Note -- W (Wronskian) is constant, since o =0.
X

— Useful Green's function construction in one dimension:

G, (x,x") = %ga (x.)g,(x.)
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Some details.
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(_ir(x)i +v(x) — ﬂG(X)j(P(X) = F(x)
dx dx

Green's function solution:

?; (x)= (010()6) +J.G1 (x,x")F(x"dx'

0,00+ B0 [, (O £l [ (P

Note that the integral has to be performed in two parts.
While the eigenfunction expansion method can be
generalized to 2 and 3 dimensions, this method only works
for one dimension.
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More details.

21



Another example --
2
de(x) =—-p(x)/€ electrostatic potential for charge density p(x)
X

Homogeneous equation:
2

d
wga,b(x)zo

Letg,(x)=x  g,(x)=1
Wronskian:

de, (x de (x
W =g, () B g (Bl
dx dx
Green's function:

G(x,x")=—x_

cp(x):cpo(x)+ijdx'x'p(x')+1jdx'p(x')
60 —0 60 X
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Another example, this time taken from electrostatics.

22



Example -- continued
2

?d)(x) =—p(x) /€, electrostatic potential for charge density p(x)

D(x) =D, (x) +i jﬁ dx'x' p(x") +£de'p(x’)
€ “» € %

0 x<-a
Suppose  p(x)=<px/a —-a<x<a
0 xX>a
0 x<—a

3 2 3
DO(x) =Dy (x)+ &[a_ﬁ_&_x_} —a<x<a
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Solutions for a particular charge distribution.



0 x<-a
3 2 3
d(x) = Po)d XX i<x<a
cal\ 3 2 6
2
— p,a xza
3¢,
2_
-2 1 0 1
_1_
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Plot of the change distribution and of the electrostatic potential.



