PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Discussion for Lecture 22: Chap. 7
& App. A-D (F&W)

Generalization of the one dimensional wave equation =
various mathematical problems and techniques including:
1. Fourier transforms
2. Laplace transforms
3. Complex variables
4. Contour integrals
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In this lecture we will start to cover various useful mathematical techniques.



Schedule for this week

Thurs, Oct. 21,2021 — Yan Li, WFU graduate student — Ph. D. Defense: “First Principles Investigations of Electrolytes
Materials in All-Solid-State Batteries” — 9AM-10AM (note special time) — mentor: Professor Natalie Holzwarth

Thurs. Oct. 21,2021 - Professor Jarrett Lancaster, High Point University, NC = “Simulating Quantum Dynamics with
Quantum Computers” (host: D. Kim-Shapiro)

Note that Yan Li will also give a regular
physics colloquium on Nov. 4th
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6 ||Fri, 9/03/2021 Chap. 2 Non-inertial coordinate systems #5 9/06/2021
7 (Mon, 9/06/2021 |Chap. 3 Calculus of Variation #6 9/10/2021
8 |Wed, 9/08/2021 |Chap. 3 Calculus of Variation
9 |Fri, 9/10/2021 |Chap.3 & 6 |Lagrangian Mechanics #7 9/13/2021
10Mon, 9/13/2021 |Chap.3 & 6 |[Lagrangian Mechanics #8 9/17/2021
11 |Wed, 9/15/2021 ||Chap. 3 & 6 Constants of the motion
12||Fri, 9/17/2021  |Chap.3 & 6 Hamiltonian equations of motion #9 9/20/2021
13|Mon, 9/20/2021 |Chap.3 & 6 Liouville theorm #10 9/22/2021
14|Wed, 9/22/2021 |Chap.3 & 6 ||Canonical transformations
15|Fri, 9/24/2021  ||Chap. 4 Small oscillations about equilibrium #11 9/27/2021
16 | Mon, 9/27/2021 ||Chap. 4 Normal modes of vibration #12 9/29/2021
17|Wed, 9/29/2021 |Chap. 4 Normal modes of more complicated systems #13 10/04/2021
18||Fri, 10/01/2021 |Chap. 7 Motion of strings #14 10/06/2021
19 |Mon, 10/04/2021||Chap. 7 Sturm-Liouville equations
20 (Wed, 10/06/2021 |Chap.1-7 Review

Fri, 10/08/2021 |No class Fall break

Mon, 10/11/2021 [No class Take home exam

Wed, 10/13/2021 |No class Take home exam
21 |(Fri, 10/15/2021 |Chap. 7 Sturm-Liouville equations -- exam due

» 22(Mon, 10/18/2021|Chap. 7 Fourier and other transform methods #15 10/20/2021

23|Wed, 10/20/2021 |Chap. 7 Complex variables and contour integration

This is the schedule. You will receive an email containing the mid term exam. It will be
due next Monday.



This assignment covers material from Friday’s lecture --

PHY 711 -- Assignment #15
Oct. 18,2021

Continue reading Chapter 7 in Fetter & Walecka.

Consider the example presented in Lecture 21, slide 23, where a one-dimensional Poisson equation
was solved using a Green's function constructed from the corresponding homogenious solutions.
Verify the results on this slide and check that the resultant potential ®(x) satisfies the particular
Poisson equation for x <-a,-a <x <a, and forx > a.
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Review — Sturm-Liouville equations defined over a range of x.

For x,<x<x,

Homogenous problem: (—i 7(x) 4 +v(x)— /10'(x)j @,(x)=0
dx dx

Inhomogenous problem: (—ir(x)i +v(x) - ia(x)j o(x)=F(x)
dx dx
Eigenfunctions:

[~ v | 100 = 20w 0
dx dx

Note that, because Sturm-Liouville operator is Hermitian,
the eigenvalues are real and the eigenfunctions are
orthogonal. In the last lecture, we argued that the
eigenfunctions form a “complete” set over the range of x
defined for the particular system.
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Review of the Sturm Liouville equations.



Formal statement of the completeness of eigenfunctions:

O_(x)zwzg(x_x') where N, E]édxa(x)(fn(x))z

n

Example for 7(x) =1=0o(x) and v(x) =0 with
0<x<Land f,(0)=0=f(L)

[i?ﬁ@i+ww)mw=amwﬁu> = -LED g p o
¢ dx dx

In this case, the normalized eigenfunctions are

2 nrx nr Y
X)=,[—sin| — A =— n=12,...
10 =(Fsin( "] 2,22 ]
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Specializing to the simplest case.



Formal completeness for this case:

EZsin @jsin[nﬁx :5(x—x') for 0<x<L
L= L L

10/18/2021
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Visualizing the completeness condition.




Joseph Fourier

Jean-Baptiste Joseph Fourier

Born 21 March 1768
Auxerre, Burgundy, Kingdom
of France (now in Yonne,
France)

Died 16 May 1830 (aged 62)
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N N
h(x,N)=) A, sin(nrx)
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Numerical evaluation of an example.




Convergence of the Fourier series
In general, h(x,N — ©) = h(x)
1_

08l Example h(x)=x2

if 4,

n+l

<1

-~

/‘\\
20 terms >/ |
!
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Numerical evaluation of less convergent example.
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Using Fourier series to solve the wave equation.

0

O%u(x,t) s o%u(x,t) B
ox’ ¢ or
In this case, we will impose the boundary values u(0,¢#) =0=u(L,?), and

ou(x,0)
ot

the initial conditions u(x,0) =¢(x) and w(x).

Now suppose that u(x,t) = p(x)cos(wt + ) where w and « are not yet known.

The spatial function p(x) must then satisfy
d’p(x) o .
LD 8 px)=kep(x) with p(0)= p(1) =0

We recognize this equation and find the normalized eigenfunctions to be

2
p,(x) = %sm(”Lﬂj k2 =(%j n=12,... o =kc
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Using Fourier methods to solve the wave equation.
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Using Fourier series to solve the wave equation -- continued.
The general solution can be formed by taking a linear
combination of the eigenfunction results.

u(x,t)= i C p,(x)cos(wt+a,)

n=1

where p, (x) = %sin (—) n=12,... w,=—:c

The constants C, and ¢, are determined from the initial conditions.

50 =Y p.0,(x) where g, = [ p, (¥ )p(x)dx

P =Y w,0,(x) where , = [ p, (X (<)’
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Setting the boundary and initial conditions.

12



Using Fourier series to solve the wave equation -- continued.
Finding the constants from the eigenfunction (Fourier)
expansion.,,

u(x,t) = Z C p,(x)cos(wt+a,)

u(x,0) = i C, cos(a, )p, (x) = irpnp,, ()
D) —Z 0,C, sin(e, ), (x) = va ()

Since the eigenfunctions p,(x) are orthogonal, the constants

are immediately determined:
u(x,t)= Z (C, cos(a,)cos(w,1)— C, sin(e, ) sin(w,1) )p, (x)

—Z((pn cos(@, t) + = Yo sin(w, f)jp (x)
a)

n=l1 n
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Determining the constants.
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Solution to wave equation from eigenfunction expansion

u(x,1) :i ((pn cos(@,f) + ﬂsin(a)nr)}an (x)
(0]

n=1 n

2
where x)=,[—sin| —
P, (%) 7 [L

Recall D'Alembert's solution

x+ct

u(x,t) = %(go(x —ct) + p(x +et)) - [ whax

x—ct

Are these two solutions
a. ldentical
b. Equivalent
c. Totally different
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Interesting question.
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Fourier series and Fourier transforms are useful for solving
and analyzing a wide variety of functions, also beyond the
Sturm-Liouville context.

In the next several slides we will consider a related concept
— the Laplace transform.
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We now consider another technique that is uses to solve initial value equations.
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Laplace transforms

Laplace transforms can be used to solve initial value problems. The Laplace transform of
a function ¢(x) is defined as

Lo(p) = /D F e () dx. (24)

Assuming that ¢(z) is well-behaved in the interval 0 < z < oo, the following properties
are useful:

Edo/dz(p) = —¢(0) + pLs(p), (25)
and 46(0)
o(C
Larosar(p) = ———= = po(0) + p*Lo(p). (26)
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A quick introduction to Laplace transform methods.
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These identities allow us to turn a differential equation for ¢(z) into an algebraic equation
for L£,(p). We then need to perform an inverse Laplace transform to find o(x).

For illustration, we will consider a simple example with 7(z) =1, o(z) =1, A = 0. The
differential equation then becomes

_d*o(x)
dz?

= F(x), (27)
where we will take the initial conditions to be ¢(0) = 0 and do(0)/dz = 0. For our
example, we will also take F(z) = Fye™®. Multiplying, both sides of the equation by e=?*

and integrating 0 < x < oo, we find

Lolp) = — 55— (28)

10/18/2021 PHY 711 Fall 2021 -- Lecture 22 17

An example.
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In general the inverse Laplace transform involves performing a contour integral, but we
can use the following simple relations
B 1
2, :f eFidr = - (29)
0 p
0 1
B = f re Py = —. (30)
0 p
o2 1
Le—a :/ e e Py = g (31)
0 P+
Noting that
F F 1 1~
—270———3(————‘-—'2). (32)
Pir+p  Y\r+p p P
we see that the inverse Laplace transform gives us
F, .
o(zr) = ,\_2 (1 —e T — “rr':r) ; (33)
We can check that this a solution to the differential equation
d’ _ d
——?:F()e " for #0)=0  and —¢(0):0
dx dx
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Some details.
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Using Laplace transforms to solve equation :

(_5722 - 1J¢(x) - F, sin(%} with $(0) =0,

dg0) _,
dx

Note that I sin(at)e"”dt: 5 a - _
0 a +p Does this result
look familiar?
F, (e mo.
(z/L) -1 L) L
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More details.
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Laplace Iranstorm |able
Largely modeled on a table in D'Azzo and Houpis, Linear Control Systems Analysis and Design, 1988
Table of Laplace
F(s) fin 0<t¢t
tran SfOFmS L1 S(t) unit impulse at / =0

s L 1 or u(?) unit step starting at 7 =0

5
3 1 t-u(f) ort ramp function

e

L 1 el P
4. o -1 n = positive integer

le—a: u(t—a) unit step starting at f = a
5. s

1 w uf)—ut—a) rectangular pulse
6 —(l —€
7. ! e exponential decay

sta

1 1 g P
8. (s+a)" n—1)! n = positive mteger
1 1 ar
5. s(s+a) E(lie )
1 b
10 71 —(l——e“ +i€7h)
© s(s+a)s+b) ab b-a b-a

" s+a i[aib(a—a)e_m+a(a—b)e_b,]

s(s+a)s+h) ab b-a b-a

1 | P

—_— e —e

12 (svaxs+h) ba )
5 -ar —be
- - (ae™™ —be™)
B Gia)s+b) a-b
https://www.dartmouth.edu/~sullivan/22files/New%20Laplace%20Transform%20Table.pdf
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Table of transforms for simple functions.



Inverse Laplace transform :
® In order to evaluate these
L,(p)=[e 7 p(t)dt integrals, we need to use
0 complex analysis.
A+io
¢(t)—— f A
1 A+io 1 A+io ®©
. t _ t - pu
Check: 2—7”_/1[006” B(p(p)dp = ?Al[ooep dp}[e v (p(u)du
A+io
(=) g o imu) pis(i=u);
27”.“0 u)du J-iw e’ dp = —Igo(u)du.[o e ids
A(t—u) .
27”'“0 )du( T2 5(t—u))
_Je(t) ift=0
|0 otherwise
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Mathematical treatment of general case.
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Complex numbers

iE\/—_l i =-1

Define z=x+iy
|Z|2 =zz*=(x+iy)(x—iy) = X+
Polar representation
z=p(cosg+ising)=p e
Functions of complex variables

f(z) = ER(f(z)) + lS(f(z)) =u(x,y)+iv(x,y)

Derivatives: Cauchy-Riemann equations

of (2) _ ou(z) +i6v(z) of (2) _ ou(z) +i6v(z) _ ov(z) _iau(z)

Ox ox Ox ioy ioy ioy oy Oy
Argue that %zaf(z) _ 8f(z) = 8u(z) _ 8v(z) and ﬁv(z) _ _au_(z)
dz  Ox ioy Ox oy Ox Oy
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Introduction to properties of complex numbers.
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Analytic function
f(z) is analytic if it is:

o continuous
osingle valued
o its first derivative satisfies Cauchy-Rieman conditions

Which of the following functions are analytic?
flz)=¢€

flz)=2"

f(z)=Inz

flz)=z2"
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Notion of analytic function. Some of these functions are not analytic.
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Some details

e’ =" =e" cos(y) +ie* sin(y)

ou ov o . ou
—=e cos(y)=— —=e sin(y) =——
Ox oy Ox oy

z’ =(x+iy)2 =(x2 —y2)+2ixy
ox oy ox oy
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Some details. To be continued.
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