PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103

Notes for Lecture 24 — Chap. 5 (F &W)

Rotational motion
1. Torque free motion of a rigid body
2. Rigid body motion in body fixed frame

3. Conversion between body and inertial reference
frames

4. Symmetric top motion
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In this lecture, we continue our discussion of rigid body motion.



13| Mon, 9/20/2021 |Chap.3 & 6 |[Liouville theorm #10 9/22/2021
14|(Wed, 9/22/2021 |Chap. 3 &6 Canonical transformations
15Fri. 9/24/2021  ||Chap. 4 Small oscillations about equilibrium #11 9/27/2021
16 Mon, 9/27/2021 ||Chap. 4 MNormal modes of vibration #12 9/29/2021
17|(Wed, 9/29/2021 ||Chap. 4 MNormal modes of more complicated systems |#13 10/04/2021
18|[Fri. 10/01/2021 ||Chap. 7 Motion of strings #14 10/06/2021
19 Mon, 10/04/2021 |Chap. 7 Sturm-Liouville equations
20|(Wed. 10/06/2021 |Chap.1-7 Review

Fri. 10/08/2021 ||No class Fall break

Mon, 10/11/2021 [No class Take home exam

Wed, 10/13/2021 [No class Take home exam
21|[Fri. 10/15/2021 ||Chap. 7 Sturm-Liouville equations -- exam due
22 Mon, 10/18/2021 (Chap. 7 Fourier and other transform methods #15 10/22/2021
23 (Wed, 10/20/2021 |(Chap. 7 Complex variables and contour integration |#16 10/22/2021
24|[Fri. 10/22/2021 ||Chap. 5 Rigid body motion #17 10/27/2021

» 25 Mon, 10/25/2021|[Chap. 5 Rigid body motion #18 10/29/2021
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Since you will be turning in your exams today, we will resume the homework assignments.



PHY 711 -- Assignment #18

Continue reading Chapter 5 in Fetter & Walecka.

1. Work problem 5.9, parts (a) and (b) at the end of the chapter.
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Summary of previous results
describing rigid bodies rotating
about a fixed origin @

dr
— =@OXr
dt inertial

Kinetic energy: T =Zlmpv
2
1
=3 L, (oxr, ) (0xr,)
p
1
=Z§mp[(m-(o)(rp-rp)—(rp-co)z]
P

zl(x)-i-(z) iEZmp(lrpz—rprp)
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Review of notions of rigid body motion.



Moment of inertia tensor
Matrix notation:

Ixx ]xy Ixz

T _ 2

I'= Iyx Iyy Iyz Iij:zmp(é‘ijrp _rpirpj)
[zx Izy IZZ 3

: 1
For general coordinate system: 7 = —Z l,00,
ij

ca A A 1 -

O =08+, +d8, T==>1d
2~
1
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For (body fixed) coordinate system that diagonalizes

moment of inertia tensor: 1-& ,=1¢, i=1,2,3

In general there is a symmetric tensor which defines the moment of inertia.
the coordinates about a fixed origin we can find the matrix in diagonal form.

By rotating



Continued -- summary of previous
results describing rigid bodies
rotating about a fixed origin @

dr
—_— =MXr
dt inertial

Angular momentum: L:Zmprvap:Zmpp ( xrp)

P P
L=Zmp[(o(rp-rp)—rp(rp-(o)}
)4
o y _ 2
L=1w I_Zmp(lrp rprp)
4
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In addition to the kinetic energy, the angular momentum also can be expressed in terms of
the moment of inertia tensor.



Descriptions of rotation about a given origin -- continued

For (body fixed) coordinate system that diagonalizes
moment of inertia tensor:
I-é =1é O =D, +0,8,+@e,

L=10e+1,0,e,+],0.€,

Time derivative: @ = (ﬂl +oxL

dL oA L oa oa
—=Ilwe+1l,0,e,+1,0w,e,+
dt
w2w3(13 —12)e1+a)3a)1(11 —13)e2+a)1a)2(12 —11)e3
10/19/2020 PHY 711 Fall 2020 -- Lecture 24 7

It is convenient to express the angular moment in terms of the principal moments .



Descriptions of rotation about a given origin -- continued
Note that the torque equation

a(a)
—=|— +oxL=1
dt dt ) yoay

is very difficult to solve directly in the body fixed frame.

For T =0 we can solve the Euler equations:

@,0,(1,—1,)é +@,0,(1, - I,)€,+@,@, (1, — I,)é,

Want to determine

]20)2 + 0,0, ([1 -7 ) =0 angular velocities @,(?)
L&), + @ 1,)=0
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When there is zero torque acting on the system, the angular velocity components are
coupled through these Euler equations.



Euler equations for rotation in body fixed frame :
1151 + 5)253(13 —[2)= 0
L, +a&,0,(1,—1,)=0

]353 +5152(]2 _11)20

Solution for symmetric top -- 7, =1, :

1151 + 5257)3(13 _]1): 0

1152 + 5)351(11 _[3): 0

Ly, =0 = @, = (constant) |

Define: Q =, ﬁ 0.)1 = -,
d @, = 0,Q
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The solution to the coupled angular velocity components is in general complicated, but
simplifies when two of the principal moments are equal for a “symmetric top”.



Solution of Euler equations for a symmetric top -- continued

~

W, = -, W, = w,(2

~ 1,1
where Q = @, 2—+
1

Solution :  @,(¢) = Acos(Qt + @)

@, (t) = Asin(Qt + @)

1 1 1
T :521@5 = 511/12 +513a)32

L=1/10e¢+],0,e,+1,0,¢,
= 1, A(cos(Qz + @ )é,+sin(Qt + 9 )6, )+ L,,e,
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Details of the solution for a symmetric top.

10



Euler equations for rotation in body fixed frame :

[151 +a~)253(13 —]2)=0
L, +a&,0,(1,—1,)=0

]353 +510’32(]2 _11)20

Solution for asymmetric top--1; # 1, # I, :
I, -1,

Suppose : @, ~ 0 Define : Q, = @,

1

For example, the - 1,-1
object starts spinning ~ Define : Q, = @, 7

along the 3 axis. 2
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Now consider the case where all of the principal moments are unequal.

11



Euler equations for asymmetric top -- continued
1,6, +@,6,(1,-1,)=0

L&, +é,@,(1,-1,)=0

Lo, +@@,(1,-1,)=0

-1,
I, oI

If @&, =~0, Define: Q, = o,

&, = —Q,@, &, = 0,
If Q, and Q, are both positive or both negative :

o, (1) = Acos(1/Q1Q2t+(p)
o, (t) = A\/%sin(w/QIta+¢))
1

= If Q, and Q, have opposite signs, solution is unstable.
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We can find approximate stable solutions in certain cases.

12



1 inertial

body -
Z

Transformation between body-fixed and inertial
coordinate systems — Euler angles

Comment — Since this is an old and
intriguing subject, there are a lot of
terminologies and conventions, not all of
which are compatible. We are following
the convention found in most quantum
mechanics texts and NOT the convention
found in most classical mechanics texts.
Euler’s main point is that any rotation can
be described by 3 successive rotations
about 3 different (not necessarily
orthogonal) axes. In this case, one is
along the inertial z axis and another is
along the body fixed Z axis. The middle
rotation is along an intermediate N axis.

http://en.wikipedia.org/wiki/Euler angles

10/19/2020
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In order to consider motion of a rigid body more generally, in the presence of torque, it will
be necessary to consider how to relate the body — fixed coordinates that diagonalize the
moment of inertia tensor to another coordinate system which in general be an inertial
coordinate system. Here again, we use ideas of Euler.

typically consistent with quantum mechanics text books.

This notation or it is equivalent is

13



Comment on conventions

Our diagram
|
body -
zZ

On web (for CM)
VA
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~ « A0 oAl « A
N o=qae,+pfe,+ye,

\\

\

\
N

' Need to express all components in
'y body-fixed frame:

2
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Euler said that the transformation of body-fixed = inertial frames can be accomplished in 3
steps and the corresponding angles are alpha, beta, and gamma. In this case, we want to
express all results in the body fixed frame.



~ . A( 5 A A
o=qe,+pfe,+ye,

Al

e, =siny € +cosy e,

Matrix representation:

cosy siny 0)(0 sin y
é,=|-siny cosy 0| 1]|=|cosy
0

0 0 1 0
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We can express the angular velocities in terms of the time rate of change of the alpha,
beta, and gamma Euler angles. We can also express the rotation axes in terms of the
instantaneous Euler angles as well. Here is the transformation of the middle axis.

16



10/19/2020

&) =—sinf &' +cosfB &',
=—cosysinf € +sinysin S &, +cos [ €,
Matrix representation:
cosy siny O)cosff 0 —sinf)0
8)=|-siny cosy Of| O 1 0 0
0 0 I ){sing 0 cosf J\1
—sin fcosy
=| sinfsiny

cos 3
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Here is the transformation of the inertial 3 axis.

17



~ . A 5 A - A
o=qe,+pe,+ye,

—sin fcosy sin y 0
®=c¢| sinfBsiny |+f|cosy|+7|0
cos 0 1

0 =0e, + 0,8, +0,e,

—sin fcos y sin ¥ 0
®=ca| sinfBsiny |+p|cosy|+70
cos 3 0 1
@, = a(~sin Bcos y)+ Bsiny
@, = ci(sin Bsin y)+ S cos y
@, =0 cos f+y
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Putting all of the transformations together, we now have expressions for the angular
velocity components referenced to the body fixed frame.

18



10/19/2020

O=aeél+feé, +7e,
@ =[02(—sin,6’cosy)+ﬂ"siny]é1

+ [d(sin,b’sin y)+ Beos y]éz

+[acos B+7]e,
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Result to remember.

19



General expression of the rotational kinetic energy and the special case of the symmetric
top.

Rotational kinetic energy

oo 1o 1, 1
T(a,ﬂ,y,a,ﬂ,y)zglla)f +E]2w22 +El3a)32

- %[1 [d(— sin #cos y )+ fsin 7/]2
+%]2 [d(SinﬁSin y)+ fcos 712

+%[3[dcosﬁ+7]2
If 1,=1,:

T(a,ﬂ,y,a,ﬁ,y')=%11 (¢? sin? ,B+/5’2)+%I3 [6cos B+ 7T
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Recap --
Transformation between body-fixed and inertial
coordinate systems — Euler angles

i inertial

body -
L

http://en.wikipedia.org/wiki/Euler angles
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In addition to the dynamic transformation needed for rigid body mechanics, this formalism
is more generally useful when relating coordinate systems of different orientations.

21



General transformation between rotated coordinates —
Euler angles
&N & =
A inertial
V=RV = R,R,R V
R=

body , _ .
7 cosa sina O)cosff O —sinf) cosy siny 0
—sina cosa O 0 1 0 —siny cosy O
0 0 I\sing 0 cosp 0 0 1

http://en.wikipedia.org/wiki/Euler angles
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In general any transformation can be expressed in terms of the three Euler angles.

22



Motion of a symmetric top under the influence of the
torque of gravity:

Y

&

a

L(Ol,ﬂ,;/,d,ﬂ',y):%]l(oﬁ sin2ﬂ+ﬂ'2)+

%]3 [02 cosﬂ+}?]2 — Mgl cos
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Now consider the motion of a symmetric top in which the pivot point is fixed and torque is
applied by gravity acting at the center of mass of the top. Here | denotes the distance of
the pivot point to the center of mass.

23



Ll p.y.a.5.7)= %11(022 sin? B+ )+

%Q[dcosﬂ—i—;}]z — Mgl cos

Constants of the motion :

P, == Iasin’ f+ L[ cos f+ 7 ]cos
a
oL ) .
p, :—_:]3[acos,3+7’]
oy

1 ., p
E==1p"+—L+V,
Y 1B+ )

. 1. ., (p -p cosﬂ)Z p2
L\B,B)=—1p" +2 1 + =L — Mgl cos
(£.) 2 g Ty, Meleosh

_ (pa_pycosﬂ)z

V.. (8)= + Mgl cos B
< 21,sin” 3
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Lagrangian and its solution.

24



2
: —p, €os
E:l[1ﬁ2+p7 +(p“ py' - 'B)z + Mgl cos 3
2 21, 21,sm”
2
| — p, cos
E'=E—&=—[lﬂ2+(p“ a2a ﬂ)z+Mglcosﬂ
21, 2 2[,sin” 8

Stable/unstable
solutions near
p=0
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Special case where top is spinning nearly vertically.

25



Your questions --How to decide stable/unstable solutions in slide 25?7 So
for the problem on slide 23, if there is no initial movement/rotation of the
top then the effective potential would stay as Mglcos(beta).

Comment — When we discussed one dimensional motion, we discussed
stable and unstable equilibrium points. At equilibrium dV/dx=0, but only
when V(x) has a minimum at that point, is the system stable in the
sense that for small displacements from equilibrium, there are restoring
forces to move the system back to the equilibrium point.

inimizati i uncti

301 maximum
251
v 207
151
107
5,

0 1 2 3
X
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Suppose p,=p, and =0

+ Mgl cos

2
pop bl o)
21, 21, sin*
2 e )
+ Mgl
AR gl(i-3?)
| R p Mgl | .,
—1,p° +| —L——— " + Mgl
1P [811 2 ]ﬁ &
= Stable solution if
p, =+4Mgll,
Note that
p, =10

= o, must be sufficiently large

for the top to maintain vertical
orientation (£ ~0).
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Approximate solution for that case.

27



http://www.physics.usyd.edu.au/~cross/SPINNING%20TOPS.htm

N

Home > American Journal of Physics > Volume 81, Issue 4 > 10.1119/1.4776195

Full . Published Online: 18 March 2013 Accepted: December 2012

See also -- - .
The rise and fall of spinning tops
American Journal of Physics 81, 280 (2013); https://doi.org/10.1119/1.4776195
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More general case:
2
| I - p., €OS
p=g-tr =15+ (p"‘ py' - 'H)z + Mgl cos 3
21, 2 21 sin” B
10+
N
6
1
EID I l‘D I G‘D ‘ S‘,II]-H”I b_-?DD I 1,Iu : I_/)-‘-“N‘/I 1s‘m
10/19/2020 PHY 711 Fall 2020 -- Lecture 24 29

For a spinning bicycle suspended by a rope, the beta angle can be greater than 90 degress



https://drive.google.com/file/d/0B14RyYwpwSDNcXdxTWISOExHX1k/view
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Constants of the motion :

oL . .
py=a—y.=13[a008ﬂ+7]

L . - ;
P, =g—_=Ilasm2ﬂ+l3[0!COSﬂ+7]C°Sﬁ
a

V'S

=lasin® B+ p, cos 8

2
| . - p, cos
E'= —&:—Ilﬂ2+(p“ py. 5 ﬂ)2+Mglcosﬂ
21, 2 2[,sin” 3
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Summary of results.



