PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103 Notes for Lecture 26 – Chap. 8 (F & W)

Motions of elastic membranes

- 1. Review of standing waves on a string
- 2. Standing waves on a two dimensional membrane.
- 3. Boundary value problems

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

In this lecture, we will resume our consideration of elastic media, extending the one dimensional analysis of a string to a two dimensional membrane.

15	Fri, 9/24/2021	Chap. 4	Small oscillations about equilibrium	#11	9/27/
	Mon, 9/27/2021	Chap. 4	Normal modes of vibration	#12	9/29/
	Wed, 9/29/2021	Chap. 4	Normal modes of more complicated systems	#13	10/04
18	Fri, 10/01/2021	Chap. 7	Motion of strings	#14	10/06
19	Mon, 10/04/2021	Chap. 7	Sturm-Liouville equations		
20	Wed, 10/06/2021	Chap.1-7	Review		
	Fri, 10/08/2021	No class	Fall break		
	Mon, 10/11/2021	No class	Take home exam		
	Wed, 10/13/2021	No class	Take home exam		
21	Fri, 10/15/2021	Chap. 7	Sturm-Liouville equations exam due		
22	Mon, 10/18/2021	Chap. 7	Fourier and other transform methods	<u>#15</u>	10/22
23	Wed, 10/20/2021	Chap. 7	Complex variables and contour integration	<u>#16</u>	10/22
24	Fri, 10/22/2021	Chap. 5	Rigid body motion	<u>#17</u>	10/27
25	Mon, 10/25/2021	Chap. 5	Rigid body motion	<u>#18</u>	10/29
26	Wed, 10/27/2021	Chap. 8	Elastic two-dimensional membranes		

The homework assignment relate to rigid body motion.

Thursday's lecture is by a Professor from Clark U in Massachusetts. Please consult the webpage for details including relevant references on the topic.

Elastic media in two or more dimensions --

Review of wave equation in one-dimension – here $\mu(x,t)$ can describe either a longitudinal or transverse wave.

Traveling wave solutions --

$$\frac{\partial^2 \mu}{\partial t^2} - c^2 \frac{\partial^2 \mu}{\partial x^2} = 0$$

Note that for any function f(q) or g(q):

$$\mu(x,t) = f(x-ct) + g(x+ct)$$

satisfies the wave equation.

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

4

Review of the wave equation in one special dimension.

Initial value problem:
$$\mu(x,0) = \phi(x)$$
 and $\frac{\partial \mu}{\partial t}(x,0) = \psi(x)$
then: $\mu(x,0) = \phi(x) = f(x) + g(x)$
 $\frac{\partial \mu}{\partial t}(x,0) = \psi(x) = -c\left(\frac{df(x)}{dx} - \frac{dg(x)}{dx}\right)$
 $\Rightarrow f(x) - g(x) = -\frac{1}{c}\int_{0}^{x} \psi(x')dx'$
For each x , find $f(x)$ and $g(x)$:
 $f(x) = \frac{1}{2}\left(\phi(x) - \frac{1}{c}\int_{0}^{x} \psi(x')dx'\right)$
 $g(x) = \frac{1}{2}\left(\phi(x) + \frac{1}{c}\int_{0}^{x} \psi(x')dx'\right)$
 $\Rightarrow \mu(x,t) = \frac{1}{2}\left(\phi(x-ct) + \phi(x+ct)\right) + \frac{1}{2c}\int_{x-ct}^{x+ct} \psi(x')dx'$

Review continued.

Two examples of traveling waves.

Standing wave solutions of wave equation:

$$\frac{\partial^{2} \mu}{\partial t^{2}} - c^{2} \frac{\partial^{2} \mu}{\partial x^{2}} = 0$$
with $\mu(0,t) = \mu(L,t) = 0$.

Assume: $\mu(x,t) = \Re\left(e^{-i\omega t}\rho(x)\right)$
where $\frac{d^{2} \rho(x)}{dx^{2}} + k^{2} \rho(x) = 0$ $k = \frac{\omega}{c}$

$$\rho_{\nu}(x) = A \sin\left(\frac{\nu \pi x}{L}\right)$$

$$k_{\nu} = \frac{\nu \pi}{L} \qquad \omega_{\nu} = ck_{\nu}$$

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

Standing wave solutions for constrained string.

Some more details of standing waves.

Wave motion on a two-dimensional surface – elastic membrane (transverse wave; linear regime). Two-dimensional wave equation:

$$\frac{\partial^2 u}{\partial t^2} - c^2 \nabla^2 u = 0 \qquad \text{where } c^2 = \frac{\tau}{\sigma}$$

Standing wave solutions:

$$u(x, y, t) = \Re\left(e^{-i\omega t}\rho(x, y)\right)$$

$$(\nabla^2 + k^2)\rho(x, y) = 0$$

Note that here we are visualizing transverse waves. Longitudinal waves can also exist.

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

Now consider, the same idea, generalized to two spatial dimensions. Here we will focus on standing wave solutions.

In this case, we have mapped the one dimensional elastic string to a two dimensional elastic membrane

$$\frac{\partial^2}{\partial x^2} \to \nabla^2 \equiv \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} \quad \text{(in Cartesian coordinates)}$$

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

10

Lagrangian density:
$$\mathcal{L}\left(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial t}; x, y, t\right)$$

$$L = \int \mathcal{L}\left(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial t}; x, y, t\right) dx dy$$
Hamilton's principle:
$$\delta \int_{t_1}^{t_2} L dt = 0$$

$$\frac{\partial \mathcal{L}}{\partial u} - \frac{\partial}{\partial t} \frac{\partial \mathcal{L}}{\partial (\partial u / \partial t)} - \frac{\partial}{\partial x} \frac{\partial \mathcal{L}}{\partial (\partial u / \partial x)} - \frac{\partial}{\partial y} \frac{\partial \mathcal{L}}{\partial (\partial u / \partial y)} = 0$$

$$10/27/2021 \qquad \text{PHY 711 Fall 2021 - Lecture 26} \qquad 11$$

It is possible to formulate the treatment using a continuous Lagrangian.

Lagrangian density for elastic membrane with constant σ and τ :

$$\mathcal{L}\left(u, \frac{\partial u}{\partial x}, \frac{\partial u}{\partial y}, \frac{\partial u}{\partial t}; x, y, t\right) = \frac{1}{2}\sigma\left(\frac{\partial u}{\partial t}\right)^{2} - \frac{1}{2}\tau(\nabla u)^{2}$$

$$\frac{\partial \mathcal{L}}{\partial u} - \frac{\partial}{\partial t}\frac{\partial \mathcal{L}}{\partial(\partial u/\partial t)} - \frac{\partial}{\partial x}\frac{\partial \mathcal{L}}{\partial(\partial u/\partial x)} - \frac{\partial}{\partial y}\frac{\partial \mathcal{L}}{\partial(\partial u/\partial y)} = 0$$

$$\frac{\partial^{2} u}{\partial t^{2}} - c^{2}\nabla^{2}u = 0 \qquad \text{where } c^{2} = \frac{\tau}{\sigma}$$

Two-dimensional wave equation:

$$\frac{\partial^2 u}{\partial t^2} - c^2 \nabla^2 u = 0 \qquad \text{where } c^2 = \frac{\tau}{\sigma}$$

Standing wave solutions:

$$u(x, y, t) = \Re(e^{-i\omega t}\rho(x, y))$$

 $(\nabla^2 + k^2)\rho(x, y) = 0$ where $k = \frac{\omega}{c}$

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

12

Some details.

An example of the rectangular membrane clamped on all edges.

Some two dimensional standing waves.

Other possible boundary conditions.

Consider a circular boundary:

Clamped boundary conditions for $\rho(r, \varphi)$: $\rho(R,\varphi) = 0$

16

$$(\nabla^2 + k^2)\rho(r,\phi) = 0$$
 where $k = \frac{\omega}{c}$

where
$$k = \frac{\omega}{c}$$

In cylindrical coordinate system

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2}$$

Assume: $\rho(r, \varphi) = f(r)\Phi(\varphi)$

Let: $\Phi(\varphi) = e^{im\varphi}$

 $\Phi(\varphi) = \Phi(\varphi + 2\pi)$ Note:

 $\Rightarrow m = \text{integer}$

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

Another example of a membrane, this time clamped at the boundary of a circle. (Such as in a drum for example.) It is convenient to polar coordinates.

The radial equation has this special form which is conveniently expressed in terms of Bessel functions.

Some properties of Bessel functions

Asending series:
$$J_m(z) = \left(\frac{z}{2}\right)^m \sum_{j=0}^{\infty} \frac{(-1)^j}{j!(j+m)!} \left(\frac{z}{2}\right)^{2j}$$

Recursion relations:
$$J_{m-1}(z) + J_{m+1}(z) = \frac{2m}{z} J_m(z)$$

$$J_{m-1}(z) - J_{m+1}(z) = 2 \frac{dJ_m(z)}{dz}$$

18

Asymptotic form:
$$J_m(z) \xrightarrow{z \to 1} \sqrt{\frac{2}{\pi z}} \cos \left(z - \frac{m\pi}{2} - \frac{\pi}{4}\right)$$

Zeros of Bessel functions $J_m(z_{mn}) = 0$

$$m = 0$$
: $z_{0n} = 2.406, 5.520, 8.654,...$

$$m = 1$$
: $z_{1n} = 3.832, 7.016, 10.173,...$

$$m = 2$$
: $z_{2n} = 5.136$, 8.417, 11.620,...

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

Some properties of Bessel functions of integer order.

A resource for finding properties of special functions including Bessel functions.

Series expansions of Bessel and Neumann functions

$$J_{\nu}(z) = \left(\frac{1}{2}z\right)^{\nu} \sum_{k=0}^{\infty} (-1)^{k} \frac{\left(\frac{1}{4}z^{2}\right)^{k}}{k \, ! \Gamma\left(\nu + k + 1\right)}.$$

$$Y_n(z) = -\frac{\left(\frac{1}{2}z\right)^{-n}}{\pi} \sum_{k=0}^{n-1} \frac{(n-k-1)!}{k!} \left(\frac{1}{4}z^2\right)^k + \frac{2}{\pi} \ln\left(\frac{1}{2}z\right) J_n(z)$$
$$-\frac{\left(\frac{1}{2}z\right)^n}{\pi} \sum_{k=0}^{\infty} \left(\psi(k+1) + \psi(n+k+1)\right) \frac{\left(-\frac{1}{4}z^2\right)^k}{k!(n+k)!}$$

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

20

Some details.

Some properties of Bessel functions -- continued

Note: It is possible to prove the following

identity for the functions
$$J_m \left(\frac{z_{mn}}{R} r \right)$$
:

$$\int_{0}^{R} J_{m} \left(\frac{z_{mn}}{R}r\right) J_{m} \left(\frac{z_{mn'}}{R}r\right) r dr = \frac{R^{2}}{2} \left(J_{m+1}(z_{mn})\right)^{2} \delta_{nn'}$$

Returning to differential equation for radial function:

$$\left(\frac{d^2}{dr^2} + \frac{1}{r}\frac{d}{dr} - \frac{m^2}{r^2} + k^2\right)f(r) = 0$$

$$\Rightarrow f_{mn}(r) = AJ_m\left(\frac{z_{mn}}{R}r\right); \qquad k_{mn} = \frac{z_{mn}}{R}$$

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

21

Patient mathematicians worked out lots of useful relationships. We are particularly interested in aligning the zeros of the Bessel functions with the boundaries of our membrane.

Some examples.

More examples.

 $\label{eq:continuous} \mbox{A very nice demonstration of these standing waves was invented by Chladni}$

A picture of the demo we have in Olin.

Movie thanks to Eric Chapman.

More complicated geometry – annular membrane

In cylindrical coordinate system

$$\nabla^2 = \frac{\partial^2}{\partial r^2} + \frac{1}{r} \frac{\partial}{\partial r} + \frac{1}{r^2} \frac{\partial^2}{\partial \varphi^2}$$

Assume: $\rho(r, \varphi) = f(r)\Phi(\varphi)$

Let: $\Phi(\varphi) = e^{im\varphi}$

Note: $\Phi(\varphi) = \Phi(\varphi + 2\pi)$

 $\Rightarrow m = \text{integer}$

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

27

A non-trivial example with two boundaries.

In this case, both Bessel and Neumann functions are needed.

Normal modes of an annular membrane -- continued

Differential equation for radial function:

$$\left(\frac{d^{2}}{dr^{2}} + \frac{1}{r}\frac{d}{dr} - \frac{m^{2}}{r^{2}} + k^{2}\right)f(r) = 0$$

General form of radial function: $f(r) = AJ_m(kr) + BN_m(kr)$

10/27/2021 PHY 711 Fall 2021 -- Lecture 26 29

We need to find the linear coefficients A and B and the wavevector k.

Normal modes of an annular membrane -- continued

Boundary conditions:

$$f(a) = 0 \qquad f(b) = 0$$

$$AJ_m(ka) + BN_m(ka) = 0$$

$$AJ_m(kb) + BN_m(kb) = 0$$

 \Rightarrow 2 equations and 2 unknowns -- k and $\frac{B}{A}$

$$\frac{B}{A} = \frac{-J_m(ka)}{N_m(ka)} = \frac{-J_m(kb)}{N_m(kb)}$$
 (transcendental equation for k)

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

30

A method of solving this problem.

Normal modes of an annular membrane -- continued

Boundary conditions:

$$f(a) = 0 \qquad f(b) = 0$$

$$\frac{B}{A} = \frac{-J_m(ka)}{N_m(ka)} = \frac{-J_m(kb)}{N_m(kb)} \quad -\text{ in terms of solution } k_{mn}:$$

$$f(r) = A \left(J_{m}(k_{mn}r) - \frac{J_{m}(k_{mn}a)}{N_{m}(k_{mn}a)} N_{m}(k_{mn}r) \right)$$

10/27/2021

PHY 711 Fall 2021 -- Lecture 26

Finding a solution graphically.

Solution for this case.