PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103
Notes for Lecture 26 — Chap. 8 (F & W)

Motions of elastic membranes
1. Review of standing waves on a string
2. Standing waves on a two dimensional membrane.

3. Boundary value problems
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In this lecture, we will resume our consideration of elastic media, extending the one
dimensional analysis of a string to a two dimensional membrane.



E|Fri, 9/24/2021 |Chap. 4 |Small oscillations about equilibrium |ﬂ ‘9/27!2021

16[Mon, 9/27/2021 |Chap. 4 [Normal modes of vibration 12 9/29/2021

E|Wed, 9/29/2021 |Chap. 4 |Normal modes of more complicated systems |ﬁ ‘10/04:'2021

18 [Fri, 10/01/2021 [Chap. 7 [Motion of strings 14 10/06/2021

B|Mon, 10/04/2021 |Chap. 7 |Sturm—Li0uville equations | ‘

20Wed, 10/06/2021 [Chap.1-7 ~[Review | \

" [Fri, 10/08/2021 |No class [Fall break | \

r|Mon, 10/11/2021 |No class |Take home exam | ‘

r|Wed, 10/13/2021 |No class |Take home exam | ‘

E|Fri, 10/15/2021 |Chap. 7 |Sturm—Li0uville equations -- exam due | ‘

E|M0n, 10/18/2021 |Chap. 7 |F0urier and other transform methods |m ‘10/22:‘2021

E|Wed, 10/20/2021 |Chap. 7 |Complex variables and contour integration |ﬁ ‘10/22/2021

24([Fri, 10/22/2021 [Chap. 5 Rigid body motion 17 10/127/2021

25 [Mon. 10/25/2021 [Chap. 5 Rigid body motion 18 10/29/2021
- &|Wed, 10/27/2021 |Chap. 8 |Elastic two-dimensional membranes | ‘
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The homework assignment relate to rigid body motion.




Thursday’s Physics Colloquium

https://www.physics.wfu.edu/events/colloguium-inhomo
data-october-28-2021-at-4-pm/

PHYSICS

COLLOQUIUM

“Inhomogeneous
Superconductivity, Pulsed
Magnetic Fields, and an
Abundance of Data”

Superconductivity, more than one hundred years after its
discovery, has no universal underlying microscopic, quantum
mechanical, explanation, that we know of. Itis the biggest
unsolved prablem in condensed matter physics. At Clark
University, we study various correlated electron states using high
magnetic fields, low temperatures, and high pressures, with the
hope that we can contribute to the understanding of how
electrons behave in metals. After an introduction, this talk will
concentrate on the subject of inhomogeneous superconductivity.
The story begins in 1960 when Clogston and Chandrasekhar
claimed there was an ultimate magnetic field that would destroy
superconductivity, when the energy to flip an electron spinin a
maanetic field (Zemann enerav) exceeded the binding eneray of

eneous-superconductivity-pulsed-magnetic-fields-and-an-abundance-of-

THURSDAY
L]

OCTOBER 28, 2021

4 PMin Olin 101

Charles C. Agosta, Ph.D.

Director of the 3/2 Engineering
Program and Former Chair of the
Department of Physics

Clark University

Thursday’s lecture is by a Professor from Clark U in Massachusetts. Please consult the

webpage for details including relevant references on the topic.




Elastic media in two or more dimensions --

Review of wave equation in one-dimension — here y(x,t) can
describe either a longitudinal or transverse wave.

Traveling wave solutions --

O u L, 0u

— - —=
ot? ox®

Note that for any function f{g) or g(g):
ue 0= f(x—ct)+g(x+ct)

satisfies the wave equation.
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Review of the wave equation in one special dimension.



Initial value problem: u(x,0)=¢(x) and %(x,o )=w(x)
then:  4(x0)=¢(x)=f(x)+g(x)

K 0) = (x) = — VI _ 429
= (0= ()= c( o dx]

= f()-g() == [y (x)ax

For each x, find f(x)and g(x):

0= %EM —%fw(x')dx')

g0 - %[m) + %iw(x')dx'j

= u(x,t)= %(¢(x —ct) +¢(x+cz))+2ic j w(x")dx'
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Review continued.



Example with /(x)=0 and ¢(x) =

X +0.4

-4 -2 0 2 4

Example with ¢/(x) =0 and ¢(x) = e
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Two examples of traveling waves.



2 2
8_,;1 - 8_,21 =0
ot ox
with (0,1)= u(L.t) = 0.
Assume:  u(x,t)= iR(e“‘” p(x))

2
where ddp ) +k*p(x)=0

X2
. ViIxX
x)= Asin| —
p,(x) ( 7 )
kV:"T” o =ck,
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Standing wave solutions of wave equation:

SIS

Standing wave solutions for constrained string.




05

Fundamental, or first harmonic Second harmonic

v — W
A
N N N A N A N
h fo
_ il 2 -
n=1 I—EM n=2 L=k,
a (b
=0,

Third harmonic

0.2

-05

-1
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0.8

Some more details of standing waves.




Wave motion on a two-dimensional surface — elastic

membrane (transverse wave; linear regime).
Two-dimensional wave equation:

T
—5 = cVu=0 where ¢* = —
ot o
Standing wave solutions:

u(x, y,0) =R(e ™ p(x,))

(V2 +k2)p(x,y) =0 where k=2
C
Note that here we are p(x,)

visualizing transverse
waves. Longitudinal
waves can also exist.
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10/27/2021

Now consider, the same idea, generalized to two spatial dimensions. Here we will focus on

standing wave solutions.



In this case, we have mapped the one dimensional elastic string

to a two dimensional elastic membrane

2 82 82
— = V= —+— (in Cartesian coordinates)
ox ox~ oy
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666

ou Ou Ou
L=|2 ,t dxd
I(aaaxyjdxy

Hamilton's principle :

Lagrangian density : 1{ Qu ou au, X,y ,tj

5]2.Ldt=O

oL o0 oL o oL o oL

ou ot o(ouldr) ox o(ouldx) oy o(ouldy)
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It is possible to formulate the treatment using a continuous Lagrangian.

11



Lagrangian density for elastic membrane with constant o and 7 :

2
L u,a—u,a—u,a—u;x,y,t =ld(a—uj —lT(W)2
Ox Oy ot 2 \ot 2

oL o0 oL o oL o oL

ou ot o(oulot) ox o(ouldx) oy oouloy)

o’u T

——c'Vu=0 where ¢® = —

ot o
Two-dimensional wave equation:
o’u T
—5 - cVu=0 where ¢ = —
ot o

Standing wave solutions:

u(x, y,0) =R(e " p(x,))

(V2 +k2),0(x,y):O Wherek:ﬁ
c
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Some details.
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Consider a rectangular boundary:

a

Clamped boundary conditions :

p0,y) = p(a,y)= p(x,0) = p(x,b) =0

w
= p(x,y)=4 sin(@j sin(?j where k = —
a

2 2
a b
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(V2 +k2)p(x,y) =0

c

An example of the rectangular membrane clamped on all edges.
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1 og 06 04 T4z 04 06 08

2 2 . 2
» (27 T 3 27 2z
k21 = — +| — k22 =| — + | —
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Some two dimensional standing waves.
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More general boundary conditions:
Vul, = k1,

v u‘b =0 represents "free" side

Mixed boundary conditions :

p(x.0) = p(x.b) = op(0,y) _9p(a.y) _,,

represents bounded side constrained with spring

Ox

Ox

2 mim
kmn =
( a

10/27/2021

= P, (X, 1) = Acos(mﬂxjsin(nﬂyj
a

b

(5
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Other possible boundary conditions.
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Consider a circular boundary:

Clamped boundary conditions for p(7, @) :
P(R,p)=0

(V2+k2)p(’”a¢)20 where k=2

C

In cylindrical coordinate system
010,17
or* ror r’og’
Assume:  p(r,p) = f(r)D(¢)
Let: D(p)=e"?
Note : O(p)=D(p+27)
= m = integer

VZ
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Another example of a membrane, this time clamped at the boundary of a circle.
in a drum for example.) It is convenient to polar coordinates.

(Such as

16



Consider circular boundary -- continued
Differential equation for radial function:
d> 1d m
_2 +
dr” rdr
= Bessel equation of integer order with transcendential solutions
Cylindrical Bessel function J, (z)
,(z)alsocalled Y (z)

ta
-
=N
w
=
=
o
=
ta
=
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The radial equation has this special form which is conveniently expressed in terms of
Bessel functions.



Some properties of Bessel functions

. ; 2j
Asending series: J, (z) = ( j Z [ j
] ]+m

J=

Recursion relations: J, ,(z)+J,,,(z) = —J .(2)

S (2)=J,4(2) = sz (2)

z>>1

Zeros of Bessel functions J, (z,,)=0
m=0: z, =2.406, 5.520, 8.654,...
m=1: z,6=3.832, 7.016, 10.173,...
m=2: z, =5.136, 8.417, 11.620,...
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Asymptotic form: J, (z)——> 2 cos(z - —)
z 2 4

Some properties of Bessel functions of integer order.
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http://dImf.nist.gov/

NIST Digital Library of Mathematical Functions

Project News
2014-08-29 DLMF Update; Version 1.0.9

2014-04-25 DLMF Update; Version 1.0.8; errata & mmproved MathML

2014-03-21 DLMF Update; Version 1.0.7; New Features improve Math & 3D Graphics

2013-08-16 Bille C. Carlson, DLMF Author, dies at age 89
More news

Foreword

Preface

Mathematical Introduction

Algebraic and Analytic Methods

Asymptotic Approximations

Numerical Methods

Elementary Functions

Gamma Function

Exponential, Logarithmic, Sine, and Cosine Integrals
Error Functions, Dawson’s and Fresnel Integrals
Incomplete Gamma and Related Functions

Airy and Related Functions
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29
30

Elliptic Integrals

Theta Functions

Multidimensional Theta Functions
Jacobian Elliptic Functions
Weierstrass Elliptic and Modular Functions
Bernoulli and Euler Palynomials

Zeta and Related Functions
Combinatorial Analysis

Functions of Number Theory

Mathieu Functions and Hill's Equation
Lamé Functions

Spheroidal Wave Functions

10 Bessel Functions 31 Heun Functions

11 Struve and Related Functions 32 Painlevé Transcendents

12 Parabolic Cylinder Functions 33 Coulomb Functions
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A resource for finding properties of special functions including Bessel functions.

19



Series expansions of Bessel and Neumann functions

o zz)k
I(z) = kZ kT [v rk+1)

n-1

lZ B n- I
Y?L[ZJ == (2 3 Z_: (ke 1] (4 z ) 111( )]?:[ZJ
G )“ 2 i)’
Z:: ( Wk +1) +P(n+k+ 1])k'[n+kj'
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Some details.

20



Some properties of Bessel functions -- continued

Note: Itis possible to prove the following

identity for the functions J m(zl”;" rj :

T z, z R’ >
_[ Jm - r Jm - r rdr =4 ("]m+l (Zmn )) é‘nn'
U R R 2

Returning to differential equation for radial function :

d> 1d m
e =0
= f..(r)= AJm( mn rj, - = Zm
R
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Patient mathematicians worked out lots of useful relationships. We are particularly
interested in aligning the zeros of the Bessel functions with the boundaries of our
membrane.



,001(7’,¢))=f01(r)=AJ0(%rj poz(’”a(”):foz(”)zAJo(%r\]
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Some examples.

22



Pu(r.@) = f,,(1)cos(p) P, @) = fiy(r)cos(p)
= AJI(% rj cos(p) = /Ul(%’”j cos(p)
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More examples.



Ernst Chladni

Ernst Chladni

Born 30 November 1756
Wittenberg, Electorate of Saxony
in the Holy Roman Empire

Died 3 April 1827 (aged 70)
Breslau, Province of Silesia in the
Kingdom of Prussia, a part of the
German Confederation

Nationality German

Known for Study of acoustics
Chladni plates and figures
Estimating the speed of sound
Chladni's law
Theory of meteorites' origins

Scientific career

Fields Physics

10/27/2021
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A very nice demonstration of these standing waves was invented by Chladni
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Demonstration with motor in the middle — (PASCO)

10/27/2021 PHY 711 Fall 2021 -- Lecture 26
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A picture of the demo we have in Olin.

25



http://www.physics.wfu.edu/resources/education-resources/demo-videos/waves/
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Movie thanks to Eric Chapman.

26



More complicated geometry — annular membrane

In cylindrical coordinate system
o> 10 1 ¢
St oot
or- ror r-op
Assume:  p(r,@) = f(r)P(p)
Let: D(p)=e"’
Note: O(p)=D(p+2r)
= m = integer

V2
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A non-trivial example with two boundaries.
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Consider circular boundary -- continued

Differential equation for radial function :

d> 1d m
— etk |f(r)=0
(a’r2 rdr 1’ Jf( )
= Bessel equation of integer order with transcendential solutions
Cylindrical Bessel function J, (z)

Cylindrical Neumann functio
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In this case, both Bessel and Neumann functions are needed.

28



Normal modes of an annular membrane -- continued

Differential equation for radial function:

(dz +li—m—2+kzjf(r)=0

ar* rdr r*

General form of radial function: f(r)=A4J, (kr)+ BN, (kr)
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We need to find the linear coefficients A and B and the wavevector k.

29



Normal modes of an annular membrane -- continued

Boundary conditions:

f(a@)=0 f()=0

AJ (ka)+ BN (ka)=0
AJ_(kb)+ BN (kb)=0

= 2 equations and 2 unknowns -- £ and =

B = —J, (ka) = —J, (kb) (transcendental equation for k)
A N, (ka) N, (kb)
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A method of solving this problem.

30



Normal modes of an annular membrane -- continued

Boundary conditions:

f@)=0 f()=0

B —J,(ka) —J,(kb)
A N (ka) N, (kb)

-- in terms of solution &, :

1) = A(J,,, (k) — %N (k,,mr)]
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Analysis for m=0 and a=0.1, b=0.2:

-Bessell (0, 0.2-%)

S p!ot({ -Bessell (0, 0.1-k)

BesselY (0, 0.1-k) ° BesselY (0, 0.2-k)

, k=25 .33, color=[red, b!ue]);

Ny /
/
4—'/—_/_'_’_,_‘
0
2// 2® 20 3p 3t
-05
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Finding a solution graphically.
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> fsolve(

-Bessell (0, 0.1-%)

_ —Bessell(0,0.2-k)

BesselY(0, 0.1-k)

30..33 |;
BesselY(0,02°k) ° k )

31.23030920

/

05
/
4—'—,/__.
0 T
2/. 28 ;) p at 3 &0
-05
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f(r)= A(Jm (k) =

J, (k, a)

N, (k)| K, =31.230309

10/27/2021
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Solution for this case.

34



