# PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103 Discussion for Lecture 27 - Chap. 9 in F & W ### Introduction to hydrodynamics - 1. Motivation for topic - 2. Newton's laws for fluids - 3. Conservation relations 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 In this lecture we will begin an introductory treatment of the mechanics of fluis. | 19 | Mon, 10/04/2021 | Chap. 7 | Sturm-Liouville equations | | | |----|-----------------|----------|-------------------------------------------|------------|----------| | | Wed, 10/06/2021 | Chap.1-7 | Review | | | | | Fri, 10/08/2021 | No class | Fall break | | | | | Mon, 10/11/2021 | No class | Take home exam | | | | | Wed, 10/13/2021 | No class | Take home exam | | | | 21 | Fri, 10/15/2021 | Chap. 7 | Sturm-Liouville equations exam due | | | | 22 | Mon, 10/18/2021 | Chap. 7 | Fourier and other transform methods | <u>#15</u> | 10/22/20 | | 23 | Wed, 10/20/2021 | Chap. 7 | Complex variables and contour integration | <u>#16</u> | 10/22/20 | | 24 | Fri, 10/22/2021 | Chap. 5 | Rigid body motion | <u>#17</u> | 10/27/20 | | 25 | Mon, 10/25/2021 | Chap. 5 | Rigid body motion | <u>#18</u> | 10/29/20 | | 26 | Wed, 10/27/2021 | Chap. 8 | Elastic two-dimensional membranes | | | | 27 | Fri, 10/29/2021 | Chap. 9 | Mechanics of 3 dimensional fluids | | | | 28 | Mon, 11/01/2021 | Chap. 9 | Mechanics of 3 dimensional fluids | | | PHY 711 Fall 2021 -- Lecture 27 2 10/29/2021 2 ### **Project** The purpose of this assignment is to provide an opportunity for you to study a topic of your choice in greater depth. The general guideline for your choice of project is that it should have something to do with classical mechanics, and there should be some degree of of analytic or numerical computation associated with the project. The completed project will include a short write-up and a presentation to the class. You may design your own project or use one of the following list (which will be updated throughout the term). - Consider a scattering experiment in which you specify the spherically symetric interaction potential V(r). Write a computer program (using your favorite language) to evaluate the scattering cross section for your system. (Depending on your choice, you may wish to present your results either in the the center-of-mass or lab frames of reference.) - Consider the Foucoult Pendulum. Analyze the equations of motion including both the horizontal and vertical motions. You can either solve the equations exactly or use perturbation theory. Compare the effects of the vertical motion to the effects of air friction. - Consider a model system of 2 or more interacting particles with appropriate initial conditions, using numerical methods to find out how the system evolves in time and space. For few particles and special initial conditions this approach can be used to explore orbital mechanics. For many particles and random initial conditions, this approach can be used to explore statistical mechanics via molecular dynamics simulations. - Examine the normal modes of vibration for a model system with 3 or more masses in 2 or 3 dimensions. - · Analyze the soliton equations beyond what was covered in class. 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 4 ## Hydrodynamic analysis Motivation - 1. Natural progression from strings, membranes, fluids; description of 1, 2, and 3 dimensional continua - 2. Interesting and technologically important phenomena associated with fluids #### Plan - 1. Newton's laws for fluids - 2. Continuity equation - 3. Stress tensor - 4. Energy relations - 5. Bernoulli's theorem - 6. Various examples - 7. Sound waves 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 5 Here is a list of topics that will be covered in the next few lectures. Newton's equations for fluids Use Euler formulation; following "particles" of fluid Variables: Density $$\rho(x,y,z,t)$$ Pressure $p(x,y,z,t)$ Velocity $\mathbf{v}(x,y,z,t)$ $$m\mathbf{a} = \mathbf{F}$$ $m \to \rho dV$ $\mathbf{a} \to \frac{d\mathbf{v}}{dt}$ $\mathbf{F} \to \mathbf{F}_{applied} + \mathbf{F}_{pressure}$ 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 6 Newton's laws need to be adapted to describe the physics of fluids. Here pressure is important and more generally, the functions used to describe fluids depend on position and time. Pressure acts in all directions. Here we argue that the spatial derivative of the pressure applies a force to a volume of fluid. Newton's equations for fluids -- continued $$m\mathbf{a} = \mathbf{F}_{applied} + \mathbf{F}_{pressure}$$ $$\rho dV \frac{d\mathbf{v}}{dt} = \mathbf{f}_{applied} \rho dV - (\nabla p) dV$$ $$\rho \frac{d\mathbf{v}}{dt} = \rho \mathbf{f}_{applied} - \nabla p$$ $$\mathbf{f}_{applied} = \frac{\mathbf{F}_{applied}}{m}$$ $$\mathbf{F}_{pressure} = -\nabla p dV$$ 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 8 It is convenient to write Newton's law in terms of the mass density, velocity, and pressure of the fluid. Detailed analysis of acceleration term: $$\mathbf{v} = \mathbf{v}(x, y, z, t)$$ $$\frac{d\mathbf{v}}{dt} = \frac{\partial \mathbf{v}}{\partial x} \frac{dx}{dt} + \frac{\partial \mathbf{v}}{\partial y} \frac{dy}{dt} + \frac{\partial \mathbf{v}}{\partial z} \frac{dz}{dt} + \frac{\partial \mathbf{v}}{\partial t}$$ $$\frac{d\mathbf{v}}{dt} = \frac{\partial \mathbf{v}}{\partial x} v_x + \frac{\partial \mathbf{v}}{\partial y} v_y + \frac{\partial \mathbf{v}}{\partial z} v_z + \frac{\partial \mathbf{v}}{\partial t}$$ $$\frac{d\mathbf{v}}{dt} = (\mathbf{v} \cdot \nabla) \mathbf{v} + \frac{\partial \mathbf{v}}{\partial t}$$ Note that: $$\mathbf{v} = v_x \hat{\mathbf{x}} + v_y \hat{\mathbf{y}} + v_z \hat{\mathbf{z}}$$ $$\frac{\partial \mathbf{v}}{\partial x} v_x + \frac{\partial \mathbf{v}}{\partial y} v_y + \frac{\partial \mathbf{v}}{\partial z} v_z = \nabla \left(\frac{1}{2} \mathbf{v} \cdot \mathbf{v}\right) - \mathbf{v} \times (\nabla \times \mathbf{v})$$ 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 9 Because of the continuous nature of the velocity, the total time derivative of the fluid velocity depends both or the partial derivates with respect to space and with respect to time as derived here. Newton's equations for fluids -- continued $$\rho \frac{d\mathbf{v}}{dt} = \rho \left( (\mathbf{v} \cdot \nabla) \mathbf{v} + \frac{\partial \mathbf{v}}{\partial t} \right) = \rho \mathbf{f}_{applied} - \nabla p$$ $$\rho \left( \nabla \left( \frac{1}{2} \mathbf{v} \cdot \mathbf{v} \right) - \mathbf{v} \times (\nabla \times \mathbf{v}) + \frac{\partial \mathbf{v}}{\partial t} \right) = \rho \mathbf{f}_{applied} - \nabla p$$ $$\frac{\partial \mathbf{v}}{\partial t} + \nabla \left( \frac{1}{2} v^2 \right) - \mathbf{v} \times (\nabla \times \mathbf{v}) = \mathbf{f}_{applied} - \frac{\nabla p}{\rho}$$ 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 10 Some alternative expressions for the velocity terms. ### Your question – What is irrotational flow? Irrotational flow: $\nabla \times \mathbf{v} = 0$ $$\nabla \times \mathbf{v} = \hat{\mathbf{x}} \left( \frac{\partial v_z}{\partial y} - \frac{\partial v_y}{\partial z} \right) + \hat{\mathbf{y}} \left( \frac{\partial v_x}{\partial z} - \frac{\partial v_z}{\partial x} \right) + \hat{\mathbf{z}} \left( \frac{\partial v_y}{\partial x} - \frac{\partial v_x}{\partial y} \right)$$ Which of the following vector functions have zero curl? - a. $\mathbf{v} = C\hat{\mathbf{x}}$ (*C* is a constant) - b. $\mathbf{v} = Cx\hat{\mathbf{x}}$ - c. $\mathbf{v} = Cy\hat{\mathbf{x}}$ 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 11 Solution of Euler's equation for fluids $$\frac{\partial \mathbf{v}}{\partial t} + \nabla \left(\frac{1}{2} v^2\right) - \mathbf{v} \times \left(\nabla \times \mathbf{v}\right) = \mathbf{f}_{applied} - \frac{\nabla p}{\rho}$$ Consider the following restrictions: - 1. $(\nabla \times \mathbf{v}) = 0$ "irrotational flow" $\Rightarrow$ v = $-\nabla \Phi$ $\Phi$ is "velocity potential" - 2. $\mathbf{f}_{applied} = -\nabla U$ conservative applied force - 3. $\rho = (constant)$ incompressible fluid $$\frac{\partial \left(-\nabla \Phi\right)}{\partial t} + \nabla \left(\frac{1}{2}v^{2}\right) = -\nabla U - \frac{\nabla p}{\rho}$$ $$\frac{\partial(-\nabla\Phi)}{\partial t} + \nabla\left(\frac{1}{2}v^2\right) = -\nabla U - \frac{\nabla p}{\rho}$$ $$\Rightarrow \nabla\left(\frac{p}{\rho} + U + \frac{1}{2}v^2 - \frac{\partial\Phi}{\partial t}\right) = 0$$ 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 12 The restricted equations have some interesting properties. Bernoulli's integral of Euler's equation for irrotational and incompressible fluid $$\nabla \left( \frac{p}{\rho} + U + \frac{1}{2}v^2 - \frac{\partial \Phi}{\partial t} \right) = 0$$ Integrating over space: $$\frac{p}{\rho} + U + \frac{1}{2}v^{2} - \frac{\partial \Phi}{\partial t} = C(t)$$ where $\mathbf{v} = -\nabla \Phi(\mathbf{r}, t) = -\nabla (\Phi(\mathbf{r}, t) + C'(t))$ $$\Rightarrow \frac{p}{\rho} + U + \frac{1}{2}v^{2} - \frac{\partial \Phi}{\partial t} = 0$$ Bernoulli's theorem 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 13 This result is known as Bernoulli's equation This is a problem illustrating Bernoulli's equation as a syphon. This example is taken from the PHY 114 textbook Another example of Bernoulli's equation for a syringe. Syringe fluid continued. This example of Bernoulli's equation is oversimplified. It appeared in most of the old textbook, but seems now to be deemphasized. It is given here since it shows some aspects of fluid flow, although apparently not good enough. Your question -- What aspects do over simplified Bernoulli's equation not include in studying fluid dynamics? According to a Scientific American article, the conclusion that $v_2 > v_1$ because of the shape of the airplane wing is not quite true. Numerical modeling reveal a more complicated picture. https://www.scientificamerican.com/article/no-one-can-explain-why-planes-stay-in-the-air/ 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 19 At NASA Ames Fluid Mechanics Laboratory, streamlines of dye in a water channel interact with a model airplane. Credit: *Ian Allen* (copied from Scientific American page mentioned above). 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 20 Continuity equation connecting fluid density and velocity: $$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$ $$\frac{\partial \rho}{\partial t} + \rho (\nabla \cdot \mathbf{v}) + (\nabla \rho) \cdot \mathbf{v} = 0$$ Consider: $$\frac{d\rho}{dt} = \frac{\partial \rho}{\partial t} + (\nabla \rho) \cdot \mathbf{v}$$ $$\Rightarrow \frac{d\rho}{dt} + \rho (\nabla \cdot \mathbf{v}) = 0 \qquad \text{alternative form}$$ of continuity equation 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 21 The continuity equation is an important aspect of fluid flow. Some details on the velocity potential Continuity equation: $$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \mathbf{v}) = 0$$ $$\frac{\partial \rho}{\partial t} + \rho (\nabla \cdot \mathbf{v}) + (\nabla \rho) \cdot \mathbf{v} = 0$$ For incompressible fluid: $\rho = (constant)$ $$\Rightarrow \nabla \cdot \mathbf{v} = 0$$ Irrotational flow: $\nabla \times \mathbf{v} = 0$ $\Rightarrow \mathbf{v} = -\nabla \Phi$ $$\Rightarrow \nabla^2 \Phi = 0$$ 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 22 For an incompressible and irrotational fluid, it is mathematically convenient to express the velocity field in terms of a velocity potential field. For a uniformly fluid flowing along the z direction, the velocity potential and velocity field are easily written as shown. Now consider the uniform fluid in the presence of an impediment. In the is case we consider a cylindrical log. Laplace equation in cylindrical coordinates $(r, \theta, \text{defined in } x\text{-}z \text{ plane}; y \text{ representing cylinder axis})$ $$\nabla^2 \Phi = 0 = \frac{1}{r} \frac{\partial}{\partial r} r \frac{\partial \Phi}{\partial r} + \frac{1}{r^2} \frac{\partial^2 \Phi}{\partial \theta^2} + \frac{\partial^2 \Phi}{\partial y^2}$$ In our case, there is no motion in the y dimension $$\Rightarrow \Phi(r,\theta,y) = \Phi(r,\theta)$$ From boundary condition: $v_z(r \to \infty) = v_0$ from boundary condition: $$v_z(r \to \infty) = v_0$$ $$\frac{\partial \Phi}{\partial z}(r \to \infty) = -v_0 \qquad \Rightarrow \Phi(r \to \infty, \theta) = -v_0 r \cos \theta$$ $$\frac{\partial^2 \cos \theta}{\partial z} \cos \theta$$ 25 Note that: $$\frac{\partial^2 \cos \theta}{\partial \theta^2} = -\cos \theta$$ Guess form: $\Phi(r,\theta) = f(r) \cos \theta$ We need to consider solutions of the Laplace equation. Necessary equation for radial function $$\frac{1}{r}\frac{\partial}{\partial r}r\frac{\partial f}{\partial r} - \frac{1}{r^2}f = 0$$ $$f(r) = Ar + \frac{B}{r}$$ where A, B are constants Boundary condition on cylinder surface: $$\left. \frac{\partial \Phi}{\partial r} \right|_{r=a} = 0$$ $$\frac{df}{dr}(r=a) = 0 = A - \frac{B}{a^2}$$ $$\Rightarrow B = Aa^2$$ Boundary condition at $\infty$ : $\Rightarrow A = -v_0$ 10/29/2021 PHY 711 Fall 2021 -- Lecture 27 26 Particular equations for this geometry and the application of the boundary values. $$\Phi(r,\theta) = -v_0 \left( r + \frac{a^2}{r} \right) \cos \theta$$ $$v_r = -\frac{\partial \Phi}{\partial r} = v_0 \left( 1 - \frac{a^2}{r^2} \right) \cos \theta$$ $$v_\theta = -\frac{1}{r} \frac{\partial \Phi}{\partial \theta} = v_0 \left( 1 + \frac{a^2}{r^2} \right) \sin \theta$$ For 3-dimensional system, consider a spherical obstruction Laplacian in spherical polar coordinates: $$\nabla^{2}\Phi = 0 = \frac{1}{r^{2}} \frac{\partial}{\partial r} \left( r^{2} \frac{\partial \Phi}{\partial r} \right) + \frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial \Phi}{\partial \theta} \right) + \frac{1}{r^{2} \sin^{2} \theta} \frac{\partial^{2} \Phi}{\partial \varphi^{2}}$$ to be continued ... PHY 711 Fall 2021 -- Lecture 27 27 More details.