PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes on Lecture 31: Chap. 9 of F&W
Wave equation for sound

1. Linear approximation: sound
generation

2. Linear approximation: sound
scattering
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In this lecture, we will consider traveling wave solutions to the linear sound wave equations
and also consider non-linear effects.



28 Mon, 11/01/2021||Chap. 9 Mechanics of 3 dimensional fluids %19 11/03/2021
29 |Wed, 11/03/2021 |Chap. 9 Linearized hydrodynamics equations #20 11/05/2021
30 |Fri, 11/05/2021 ||Chap. 9 Linear sound waves #21 11/08/2021
-'31 Mon, 11/08/2021 [Chap. 9 Sound sources and scattering; Nonlinear effects||#22 11/10/2021

32 |Wed, 11/10/2021 |Chap. 9 Non linear effects in sound waves and shocks—|Topic due |11/12/2021
33 |Fri, 11/12/2021 ||Chap. 10 Surface waves in fluids NPT
34 |Mon, 11/15/2021 |Chap. 10 Surface waves in fluids; soliton solutions —::;' Y ,l Wl At
35 |Wed, 11/17/2021 ||Chap. 11 Heat conduction _J i

Fri, 11/19/2021 Presentations I

Mon, 11/22/2021 Presentations IT

Wed, 11/24/2021 Thanksgiving

Fri, 11/26/2021 Thanksgiving
36 Mon, 11/29/2021 ||Chap. 12 Viscous effects on hydrodynamics
37|Wed, 12/01/2021 ||Chap. 1-12 Review
38 |Fri, 12/03/2021 ||[Chap. 1-12 Review

11/4/2020

PHY 711 Fall 2020 -- Lecture 31

Schedule.




PHY 711 -- Assignment #22

Nov. 08,2021
Continue reading Chapter 9 in Fetter & Walecka.

1. Equation 51.69 of F & W gives the expansion of a plane wave in cylindrical coordinates in terms of an infinite
summation of Bessel functions of order m. Using the asymptotic form of the Bessel function (given in the notes and
in the appendix D3.24), show the validity of this identity in the limit k — ec.
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Comment about the units of sound frequency

Harmonic time dependence of a wave:
O(r,0) = f(r)e™ = f(r)e”™
Note that @ has units of radians/sec

v has units of cycles/sec (Hz)

Q

V=—
27
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Solutions to wave equation:
1 0°®
Vch__z 2
c” ot

Plane wave solution:
» 2
O(r,t) = Ae™" ™ where k’= (—j
C

Note that these sound waves are "longitudinal"

-- the velocity wave direction is along the propagation

direction: SV =—-VO = —jAke™ T
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Review wave equation and plane wave solutions.



Wave equation with source:

2
va L8
c” Ot

= —f(l',t)

where

1 6?

¢’ Ot

11/4/2020

Solution 1n terms of Green's function :

O(r,0) = [d’r'[dr'G(r -

Ve — |G@r-r,i—t")=-8@-r")o(—-1)
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v i—1") f(r', ")

Now think of wave equation with a source.

The Green’s function is a very powerful tool

for solving these problems. We will use similar techniques in solving the wave equation

for electromagnetic waves.



Where does this force term come from?

Equations to lowest order in perturbation -- keeping applied force:

%JF(V'V)V:fapplied_v_p = %szﬁed—%
é;_'?Jrv.(pv):() = %+pov-5v=0
Assuming Sv=-V® and 6p = (2—2) sp=c’op andf, . =-VU, .,
2
5 oU In fact, in our example, the

202 lied .
— VO = —2PEC forcing term occurs at a

£ ot boundary of our system and
can be treated in terms of a
boundary value.

When the dust clears -- 5
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Wave equation with source -- continued:

We can show that :

. _‘r—r'
ol t'—| tF——
C

G(r—r',t—t")= Py

11/4/2020 PHY 711 Fall 2020 -- Lecture 31

Result that we will derive.



Derivation of Green’s function for wave equation

2
VoL O G e i) =5 —r)S(-1')

c” Ot

Recall that

| .
St—1")=— [e ™ dw
(t=t)=—— |
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First step of derivation using Fourier transform in the time domain.



Derivation of Green’s function for wave equation -- continued

Define: G(r,w)= IG(r,t)ei“”dt

1 T~ —i@
G(r,t)= E__[()G(r,a))e ‘dw
G(r, ) must satisfy :
2
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Spatial equation for Fourier amplitudes.
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Derivation of Green’s function for wave equation -- continued

(V2 +k* )fGV(r —r',0)=-5(r-r)
Solution assuming isotropy inr —r':
iik‘r—r"

é(r—r',a)):m

Check --Define R = ‘r —r'

and for R>0:

~ 2 ~ ~
(V2 +£2)G(R, @) = % ;2 (RG(R, )+ K*G(R, ) =0
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Solution for isotropic system
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Derivation of Green’s function for wave equation -- continued

_(RG(R, )+ k*G(R.©)=0

”j; (RG(R, w))+ k*(RG(R, ®))=0

(Ré(R, a))): A e™ + Be™
eikR —ikR

= 5(R,w): A R +BS

R
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Isotropic solutions continued.
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Derivation of Green’s function for wave equation — continued
need to find A and B.

Note that: V?— — ~5(r—r')
4ﬁh—rﬂ
= A=B= L
4
- eiikR
G\R,w)=
( ,a)) 47R
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A special property of the Laplace operator.
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Derivation of Green’s function for wave equation — continued

Glr—r,t—t)= % jé(r —r', 0 " daw
7T —00

1 0 eiik\r—r'

j e—ia;(t—t')da)
47z‘r —r'

:27z

1 © eii%‘r—r'

j e—ia)(t—t')da)
47z‘r —r'

—0o0

:27z

—0o0
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Taking the inverse Fourier transform.
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Derivation of Green’s function for wave equation — continued

! A 1 f eii%‘r_r" —io(t-t")
G(r—r,t—t)—zﬂ_‘[o 47r‘r—r'e dw

Noting that 1 j e ™dw = 6(u)
2w 7

Sl t— t'—‘r_r'

c

= Gr—r',t—1')=

4ﬂh—f
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Details and final result.
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=>|n order to solve an inhomogenous wave equation
with a time harmonic forcing or boundary term, we
can use the corresponding Green’s function:

+ik|r—r'

~

GQr—rUaﬁz

4ﬂh—f

In fact, this Green’s function is appropriate for solving
equations with boundary conditions at infinity. For
solving problems with surface boundary conditions where

we know the boundary values or their gradients, the
Green’s function must be modified.
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It is convenient/important to use the Green’s function consistent with the boundary values
of the particular system of interest.
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Green's theorem

Consider two functions 4(r) and g(r)

Note that : j(hvzg —szh)z’3r = §(th —gVh)-hd’r
14 S

V2D + k2D =—f(r,w)
(V2 +K)G(r -1, 0) = -5 1"
h < ®; g(—)é

J(&)(r, @)o(r—r')- 5Qr -r

0)f (r, @)l =

f)(&)(r, w)V@Qr —r, a))— 5(}1’ —rl, a))VCT)(r, a)))- nd’r

S
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In order to motivate the use of Green’s functions, we consider the famous Green’s
theorem. Note that these details/derivations will also be discussed when we consider
mathematically similar situations for electrodynamic systems.



I(d)(r,w)ﬁ(r -r')- G(|r —r'|,a))f(r,(o))d3r =

14

Cﬁ((i)(r,a))VGﬂr — r'|,a)) - G(|r - r'|,a))V(i)(r,a))) -nd’r
S
Exchanging r <> r'":

I(&)(r',w)é(r—r')—é(|r—r'|,a))f(r',w))d3rv:

vV

Cﬁ((i)(r',a))VGQr —r'|,a)) - G(|r - r'|,a))V(i)(r',a))) -nd’r'

S
If the integration volume V" includes the pointr =r":

O(r,w) = jé(|r —r' ,a))f(r',a))d3r’+

C_[)(Cf)(r',a))Vqu —r' ,a)) — G(|r —r' ,a))V(i)(r’,a))) -nd’r'
> =>extra contributions from boundary
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Derivation continued.
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Wave equation with source:
1 0°d
VO ————=—f(r,1)
c” Ot

Example:
f(r,t) = time harmonic piston of radius a, amplitude £z

can be represented as boundary value of ®(r,?)

z

ya - J

11/4/2020 PHY 711 Fall 2020 -- Lecture 31

Now consider a simplified model of a sound amplifier where the red cylinder moves up and
down in the z direction at a particular frequency omega.



In this case, we need to use a modified Green’s function to satisfy the boundary condition

at z=0.

Treatment of boundary values for time-harmonic force:

L) (r'o)d’r'+

D(r,w) = I@Qr -r'

i;(&)(r', @)V' CN;Qr —r, a))— GQr —r, a))V' D(r', a)))- nd’r'

S
Boundary values for our example :

= 2 2 2
oD 0 for x"+y >a
Oz iwea for x* +y*<a’
z=0
Note: Need Green's function with vanishing gradient atz =0:
- ik‘rfr" eik‘rff"
G(‘r—r',a))z + — wherez'=-z", z>0
47r‘r—r" 47r‘r—r“
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~ ~ oD(r', m
O(r,w)=— <j; GQr -r, a))de'dy'
S:z'=0 Z
ik‘r—r' ik‘r—?'
~ 1 e e =1 1]
Glr-r|, )= + — wherez'=-z"'; z>0
47[‘1‘ — r" 47r‘r — r"
ik‘r—r'
GQr—r',w),_O: ﬁ ; z>0
- 72"1' -r
z'=0
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Some details.
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Some details about the boundary values --

I V-Adr= I At d*r

Volume Surface Note: The surface term is
important when the analysis
is performed in a confining
volume. When the analysis
involves an infinite volume
and A vanishes at infinity,
the surface term does not
contribute.
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Some more details --

Note: Need Green's function with vanishing gradient at z =0
iklr—r| eik‘r—?"
,a))— wherez'=-z"; z>0

G(‘r—r' = + —
47[‘1’—1‘" 472"1’—1’"

Note that [r == \(x—x')’ +(y—') +(z—-2)

F=F|=(x=x) + (=) +(z+2)
Fourier transform of velocity potential:

&)(r,w):jé(|r—r' ,a))f(r',a))a”r'+

(j}(éf)(r',a))V'GQr—r'

S

,a))—é(|r—r'

,w)v'cb(r',w))-ﬁ'dzr'

Need this term to vanish at z’=0
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a)) oD(r', w)

D(r,w)=— {) (N}Qr —r|,0)————=dx'dy'
S:z'=0 aZ
' ]{ d Td¢ eik‘r—r"
=—iwea|r'dr' —_—
) ) 27z‘r — r" o

Integration domain: x'=r'cos¢'
y'=r'sing'
For r >> a; |r—r'|zr—f‘-r'

A

Assume r isinthe yz plane; ¢=7
I =sinéy +cosbz

|r—r'| ~r—r-r'=r—r'sindsing'
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Changing to more convenient coordinates.
from the moving piston.

Preparing to evaluate the expression far
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More details

= ~ oD(r', @
O(r,w)=—- Cﬁ G(‘r—r' ,a))¥dx'dy'
S:z'=0 aZ
a 2 eik‘r—r'
:—ia)gaj-r'dr' I dp' ———
7 0 27[‘1’—1’ ~
o z
Integration domain: x'=r'cos¢'
y'=r'sing' Y &
For r >> a; |r—r'|zr—f‘-r'
Assume r is in the yz plane; ¢@=%
I =sinéfy + cos bz
|r—r'| ~r—r-r'=r—r'sindsing'
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iowea e™ ¢ ’
q)(r’a)) - _ J.I"'dl"' jd¢;e—zkrsm051n¢
2 r 7

0

2
Note that : L Id(é' e = (u)
27

ikr a
= &(r,0) =—iwea— [ 'dr' J,(kr'sin 0)
r 0

j udud | (u) = wJ, (w)

0

e™ J,(kasin @)
r kasin@

= CT)(r, o) = —ivea’
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Approximate solution continued. In this approximation, the integral can be evaluated in
terms of Bessel functions.
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Energy flux: j, =o6vp
Taking time average: (j,) = %ER(&P*)

Time averaged power per solid angle :

. 2
BN ()b =~ ppecktat ke 0)
e ™ 27" kasin

=1 pR(-vo)-iow))

27

Estimating the power of the sound wave in this asymptotic regime.
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Time averaged power per solid angle :

dP P 2 374 6
— )= rr'=—p.c’k’a
<dQ> <Je> 2p0 -

020 A

J,(kasin 0)|°
kasin @

4‘0 0 0 JID b‘D SID DID
/ i i :7 }
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Graph of the power as a function of the polar angle theta.
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Scattering of sound waves —
for example, from a rigid cylinder

Z

!

l

i
Liif IMsian
il

Figure 51.8 Scattering from a rigid cylinder.

Figure from Fetter and Walecka pg. 337
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Now consider the case of a plane wave of sound, scattering off of a cylindrical object.
Can you think of a physical situation for this model?
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Example of cylindrical scattering objects

Suppose a trumpeter is playing near the columns. Maximal scattering occurs when
a. Facing toward the column b. Facing away from the column.
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Scattering of sound waves —
for example, from a rigid cylinder

Velocity potential --

O(r)=D, (r)+d_(r) ® (r)=ée*"

inc inc

Helmholz equation in cylindrical coordinates:

1o o 1 0 0
(V2 +k2)®(r):0:(;57’5+r—25¢2 +¥+k2j®(r)

Assume: O(r) = i "R, (r)

where [—+————+k2J R (r)=0
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Analysis of the scattering wave using cylindrical coordinates.
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F-4

ch-m, (r) — e[k~r — e[krcos¢ — Z imeim¢Jm (kl")

m=—0

Figure 518 Scattering from a rigid cylinder.

®, (r)= D> C,e"H,(kr) where Hankel function

represents an outgoing wave: H, (kr)=J (kr)+iN, (kr)
. )
Boundary condition atr =a: % =0
r r=a
J' (k
="' (ka)+ CH' (ka)=0 €, =" Ln)
H' (ka)
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In this case we expect a cylindrical wave that can be represented in terms of Bessel and
Neumann functions, or more conveniently in terms of Hankel functions H. Satisfying
the boundary values on the surface of the scattering cylinder, we find the coefficients of

the expression.
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2 H (k)

Asymptotic form:

2 i(kr—m
l-mHm (kl”) ~ _el(k /4)
kr—o 7Z'k7"

Figure 51.8 Scattering from a rigid cylinder.

1, - J! (ka) ; 2 ikr-nsa
D (r) ~ et = — m e e( )
0 1@ Lo - 3 Tl [

2 = J' (ka) i(m¢—7r/4)
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O (r)=- i i" Memﬂm (kr)
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Using the asymptotic form of the Hankel functions we can analyze the results further.
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—=.
5
|
=~
=

F . de
i
G =
~
) h i J‘ (ka) i(mg— 7z'/4
st o e f(¢ ,,,Zw i (k)
. For ka << 1
do 2 1
ol ] n d—¢:‘f(¢)‘ zgﬂk3a4(l—2cos¢)2
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Defining the appropriate scattering cross section, we can analyze the results further.
ka<<1 (long wavelengths, low frequencies) we find that most of the sound is scattered
backwards from the propagation direction.

For

34



