PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Notes on Lecture 32: Chap. 9 of F&W
Non-linear effects
1. Introduction to non-linear effects

2. Analysis of instability — shock
phenomena
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In this lecture, we will consider traveling wave solutions to the sound wave equations.



28 Mon, 11/01/2021||Chap. 9 Mechanics of 3 dimensional fluids #19 11/03/2021
29 Wed, 11/03/2021 ||Chap. 9 Linearized hydrodynamics equations #20 11/05/2021
30 Fri, 11/05/2021 ||Chap. 9 Linear sound waves #21 11/08/2021
ﬁ Mon, 11/08/2021||Chap. 9 Sound sources and scattering #22 11/10/2021
32 Wed, 11/10/2021 ||Chap. 9 Non linear effects in sound waves and shocks||Topic due |11/12/2021
33 Fri, 11/12/2021 ||Chap. 10 Surface waves in fluids
34 Mon, 11/15/2021||Chap. 10 Surface waves in fluids; soliton solutions
35 Wed, 11/17/2021 |Chap. 11 [Heat conduction
[ [Fri, 1171972021 Presentations I
" |IMon, 11/22/2021 [Presentations 11
[ [wed, 11/24/2021 Thanksgiving
| [Fri, 11/26/2021 Thanksgiving
36 Mon, 11/29/2021||Chap. 12 'Viscous effects on hydrodynamics
37 Wed, 12/01/2021 |Chap. 1-12 Review
38 Fri, 12/03/2021 ||Chap. 1-12 Review
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Schedule.




Your questions —

From Owen -- What is it about a system that causes it to produce a linear
wave or a non-linear wave (physically)? And, can one always determine in
advance the way in which the system behave?

Comment -- Qualitatively, the amplitude of the fluctuations
from equilibrium (dp for example) should determine
whether linear or non-linear effects dominate. For example
when you blow harder into a wind instrument, you get extra
harmonics. In today’s analysis, following your text book,
we see an analysis scheme that suggests that non-linear
effects are almost inevitable. Perhaps this is an over-
estimate???
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11/10/2021

PHYSICS

COLLOQUIUM

“Spin Response of
Hybrid Organic-Inorganic
Halide Perovskites”

The field of thin-film photovoltaics has been recently enriched
by the introduction of the 2D and 3D hybrid organic inorganic
lead halide perovskites (HOIPs) as absorber materials, which
allow low-cost synthesis of solar cells with efficiencies
exceeding 22%. In addition, it has been shown that these
compounds may be effective active layers in spintronics
applications [1] due to their large spin orbit coupling [2]. Rashba
effect in the continuum bands [3], and efficient luminescence
emission. More recently chirality has been introduced in 2D-
HOIP via chiral organic moieties [4]. which has brought novel
physics and myriad of spin-optoelectronic applications [5]. The
impact of the crystal structure especially regarding the inversion
symmetry, and the dimensionality on the optoelectronic and
spin response properties of these compounds has been the
focus of intense research at the present time. | will briefly outline
notable achievements to date, describe the unique attributes of
these perovskites that has led to their rapid emergence as
serious candidates for spintronics applications, and specifically
discuss spin-optoelectronic devices based on chiral 2D-HOIP

(6]

4PM Olin 101 __
THURSDAY
L]

NOVEMBER 11, 2021

> 1 4 d
Z. Valy Vardeny, Ph.D.
Distinguished Professor

Physics And Astronomy

The University of Utah

Salt Lake City, UT

4:00 pm - Olin 101*

*Link provide for those unable to attend in person.

Note: For additional information on the seminar
or to obtain the video conference link, contact

wiuphvs@wfu.edu
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Visualization of longitudinal wave motion

From the website:
https://www.acs.psu.edu/drussell/Demos/waves/wavemotion.html
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Now consider some non-linear effects

wn

11/10/2021 PHY 711 Fall 2021 -- Lecture 32




Effects of nonlinearities in fluid equations
-- one dimensional case

Newton - Euler equation of motion :

a—v+(V-V)V=f vp

a / applied ~—

Continuity equation : 2—"; +V -(pv) =0

Assume spatial variation confined to x direction ;

assume that v=vx and f =0.

applled

- V— =
ot  0Ox p Ox

8_p+v8_p+p@:()

ot ox ox
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Review of basic equations, specializing in one spatial dimension.



@+V@+i8_p:0
ot ox p Ox
a—'0+va—'0+,0@=0
ot ox ox

Expressing pinterms of p: p = p(p)

ox Op ox

For adiabatic ideal gas: ap _ yd_p
p P
-1
Cz(P)_y—p—Cg[ﬁJ where ¢ = Y Po
Po Po
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P _op 8,0_C2(p)8_p w here a—pzcz(,o)
ox op

Decoupling the variables.




Digression — What is gamma?

Internal energy for ideal gas:  pV = Nk,T
E. = gNkBT Jf =degrees of freedom; 3 for atom, 5 for diatomic molecule
In terms of specific heat ratio: y=—%-

CV

dE. =dQ—dW
Q:GQ):GEJ:i k,

ar ), \or), 2
cp:(d_Q :(a_EJ +p(a—Vj L Nk, + K,

ar), “\or) ~Flaor) "2

c

p=le 2t LS L g Ly

c, ! / | "y
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2
aV+v@+c (p)a—pzo
ot ox o Ox

a—p+va—'0+p@—0

ot ox | ox

Expressing variation of v in terms of v( p) :
2

ov 8p+v8v 8p+c (,0)(9,0:0

op Ot op Ox o Ox

P, 0P , V0P _

vy
ot ox L opox
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More analysis.



Some more algebra :

2 2
N ov ¢ (,20)
op p
= ——+
ot ox

11/10/2021

Combined equation :

ot Oox

2
From Euler equation : v (8’0 +v o ) + < (p) Op =0

op L  Ox

op ov 0p

. . Op
From continuity equation : —+v—=—p——"—

o ox L opox

2
o _pavﬁp LcPap_,
op op Ox p Ox
v _,c
op p

%P (vic)a—p:O

PHY 711 Fall 2021 -- Lecture 32

Further derivations.
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. . . 2 2
Assuming adiabatic process: c¢” =c¢;

v _dv_, j(p'
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y—1
ﬁ] 2
Po Po
1)/
(r-1)/2 dp
p'

Using adiabatic relationships.
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Summary :

d_Lc
dp p
9% (wre)P o
ot ox
-1
Assuming adiabatic process: ¢’ =c; (ﬁj 2 =1
Lo Lo

(r-1)/2 re (y-1)/2
c=co(£j v=+t—2 (ﬁj ~1
Lo =1\ p
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Analysis of fluid velocity from a knowledge of the wave velocity.
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Traveling wave solution:

Assume: p=p,+ f(x—u(p)t)
Need to find self - consistent equations for
propagation velocity u(0) using equations

From previous derivations : é;—"; +(v+ c)a—’o =0

ox
Apparently : u(p) = vxe

For adiabatic ideal gas and + signs :

(r-1)/2
f_“(ﬁj 2
y=1{p, y—1
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Analysis for a traveling wave.
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Traveling wave solution -- continued:

a—'0+(vic)a—'0=0
ot ox

Assume:: p:po+f(x—u(p)t):p0+f(x—(vic)t)

For adiabatic ideal gas and + signs :

(y-1)/2
u=v+c=c, —7/+1(£] ——2
y =1\ p,

Solution in linear approxiation:
(7/+1 2 ]
U=v+crv,+c,=¢,| ———— |=¢,
y—1 -1
= p=p,+f(x—cpt)
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Checking the linear result
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Some details
Assume: p=p,+ f(x—u(p)t)

Need to find self - consistent equations for

propagation velocity u(p) using equations
From previous derivations : % +(v c)a—p =0
Apparently : u(p)= vte

Note that foru =v+c¢  (choice of + solution)

8—’0+ua—'0=0

ot ox
px,1)=py + f(x—u(p(x,0)))
Let w=x-u(p(x,t))t
drow, dfow_df
dw ot dw ox dw
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is satisfied by a function of the form

(—u+u)=0
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Traveling wave solution -- full non-linear case:

Assume: f(w)= p,s(w)
P 1y s(x —ut)
Lo

For adiabatic ideal gas:

(7—1)/2
1 2
- Q(ﬁ] 2
y =1\ p, y—1
1 . 2
u=c, &(1 + S(x—ut))(7 vz ——j
y—1 y—1
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Visualization for particular waveform: p = p, + f(x —u(p)t)

w

Analysis of how to visualize the traveling wave solution.
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Visualization continued:

u=c, (7—H(1 +s(x— ut))(y_l)/2 —Lj
y—1 y—1

Plot s(x—ut) for fixed ¢, as a function of x:

Let w=x—-ut
x=w+ut =w+u(w)t = x(w,t)
y+1 (-2 2
uw)y=c,| —(1+s(w -
() o(y_l( () y_lj

Parametric equations:

plot s(w) vs x(w,t) forrange of w at each ¢
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More details.
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Summary

op op
—+ —=0
ot u(p) ox

Solution:  p=p, + f(x—u(p)t)=p, (1 +s(x— u(p)t))
For linear case: u(p) =c,
For non-linear case: u(p)=c, (7/—1(1 +s(x— ut))(yfl)/2 —~ LJ
Y- V-
Plot s(x—ut) for fixed ¢, as a function of x :
Let w=x—-ut = x=w+ut=w+u(w)t=x(w,t)
y+1 (7-1)/2 2
u(w)y=c,| —(1+s(w -—
() o(y_l( () y_J
Parametric equations: plot s(w) vs x(w,¢) for range of w
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Summary.
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Linear wave:

Non-linear wave:

11/10/2021
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Example visualization.
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Linear wave

=20 =10

Non-linear wave

10
v
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10
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PHY 711 Fall 2021 -- Lecture 32

30

20

Animations from Maple.
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Arl]f;lﬁs's fog; shock wave Solution becomes
ots ot op unphysical
T T 1 1
2 4 6 8
shock
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Note that the vertical axis represents the longitudinal wave displacement. When this
displacement becomes multivalued for a given coordinate x as shown, the solution
becomes unphysical. At this point we need to consider the analysis in a different way.



Effects of amplitude of op

Large amplitude

os Smaller amplitude
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Analysis of shock wave — assumed to moving at velocity u

After shock Before shock
t2 t1
805 6Vy, P op,, V4, 9Py
X
u

Note that in this case u is assumed to be a
given parameter of the system.
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Your textbook discusses the shock wave analysis. Here we assume that there is a region
(blue) where the analysis fails, but assumes that we can properly analyze the physics
before and after the shock. The notation given here is similar to that given in your text.
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Analysis of shock wave — continued
While analysis in the shock region is complicated, we
can use conservation laws to analyze regions 1 and 2

Assume p(x, t) = p(x - ut) ;t\ﬂer shock Before shock
2 ty
pOx,0) = p(x—ut)

P, Vo, P2 Spp. Vg, 3y
v(x,t) = v(x - ut)

X

Continuity equation:

op O(pv o(pv—pu
6_/;+ (ax)zoz ( o ) S(Vz—u)Pz:(Vl_”)Pl

Conservation of energy and momentum:

:>p2+p2(vz_u)2 =D +,01(V1 _u)z

Lo cuy s P vl —uy s 22
:>€2+2(V2 u)+p2 el+2(vl u)+p1
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Some of the details of the analysis before and after the shock event.
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Analysis of shock wave — continued
While analysis in the shock region is complicated, we
can use conservation laws to analyze regions 1 and 2

Summary of equations Al shock Bofors shck
P2, &V, P2 Spy V4, 504
:(Vz_”)pzz(‘ﬁ_”)pl .
2 2 o
=D, +:02(V2 _”) =D +:01("1 _“)
1 1
=6 +=(v,—u) +22 o +=(v, —u)’ + 2
2 P 2 P
Assume that within each regions (1 & 2), the ideal gas equations apply
S S A 3
pr=1p P, r=1p,

It follows that L&+l(v2 —u)z = L&+l(vl _u)z
y=lp, 2 y=lp 2
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Analyzing the equations.
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300

Analysis of shock wave — continued
For adiabatic ideal gas, also considering energy and
momentum conservation:
1 fﬂer shock Before shock
2 t
7/+ & +1 Spo, Vo, P2 Sy Vg, 3P4
p_y=lp  _y+l
p vl p oyl 7
y=1 p
5
4_
<7
Q 5
1,
0 160 / 2(I)0
P5/P4
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Analyzing ratio of the density after and before the shock wave.

26



Analysis of shock wave — continued
For adiabatic ideal gas, entropy considerations::

Internal energy density: &= B — C,T
(r=1p
First law of thermo: de& =Tds — pd (i]
yo,

<3l ) o)

s=C,In [%J +(constant)

/e
s, -8 =C, ln(%(%] } 0<s,-5<C, {ln[%j - yln(i—jn
1 2 1
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Analyzing the entropy before and after the shock wave. In general, many more
relationships can be analyzed. Consult your textbook for more details.



