PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin 103
Notes on Lecture 33:

Chapter 10 in F & W: Surface waves

1. Water waves in a channel

2. Wave-like solutions; wave speed
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In today’s lecture we will investigate transverse waves at the surface of a channel of water.
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Mon, 11/01/2021/|Chap. 9 Mechanics of 3 dimensional fluids #19 11/03/2021
Wed, 11/03/2021 /Chap. 9 Linearized hydrodynamics equations #20 11/05/2021
Fri, 11/05/2021 ||Chap. 9 Linear sound waves #21 11/08/2021
Mon, 11/08/2021|/Chap. 9 Sound sources and scattering #22 11/10/2021
Wed, 11/10/2021/Chap. 9 Non linear effects in sound waves and shocks| Topic due  [11/12/2021
Fri, 11/12/2021 |[Chap. 10 Surface waves in fluids

Mon, 11/15/2021||Chap. 10 Surface waves in fluids; soliton solutions

Wed, 11/17/2021 |Chap. 11 Heat conduction

Fri, 11/19/2021 Presentations I

Mon, 11/22/2021 Presentations IT

Wed, 11/24/2021 Thanksgiving

Fri, 11/26/2021 Thanksgiving

Mon, 11/29/2021 |Chap. 12 Viscous effects on hydrodynamics

Wed, 12/01/2021|[Chap. 1-12 Review

Fri, 12/03/2021 | Chap. 1-12 Review

11/12/2021
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Update to schedule including a homework dealing with today’s topic.




Comment on defunct HW 22 --

A "proof" for identity " = Y i"e"™J, (kr)

For integer m, J_ (kr)=(-1)"J (kr)=e""J (kr)
D "™ (kr) =1+2)_i" cos(mp)J,, (kr)
m=—o0 m=1

Integral form for Bessel function

i"J (z)= l]{e"”‘)”j cos(m¢)d ¢
r

0

Lfcostmpygp=5,,  ~[costm'g)cosmpyig=15,.,
Ty ’ % 2

0
y _
= " =142 i" cos(mg)J , (kr)
m=1
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Your question —

From Owen —

How does the viscosity of the fluid tie into all of this? Is there some term or
constant in the equations that represents it, or is it more complicated to model
viscosity?

Comment — The generalization of the hydrodynamics
equations that we have used so far, is the Navier-Stokes
equation which is covered in Chapter 12 of your text book.
This scheme inserts two viscosity parameters into the
equations of motion with additional constraints to account for
heat flow.
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Reference: Chapter 10 of Fetter and Walecka

Physics of incompressible fluids and their surfaces
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Consider a container of water with average height h and
surface h+{(x,y,t); (h €=>» z, on some of the slides)

Atmospheric pressure is in equilibrium with the surface of water
Pressure at a height z above the bottom where the surface is at a height 4+ ¢

p0+pg(h+é’—z) Forz<h+¢

Here p represents density of water
Do Forz>h+¢

p(2)=

11/12/2021 PHY 711 Fall 2021 -- Lecture 33 6

Defining the system and the notation.



Why do we not consider p,; in this analysis?
a. Because it is a reasonable approximation
b. Because it simplifies the analysis
c. Both of the above
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Euler's equation for incompressible fluid :

dv \Y% .V
dr — Japplied _719 =—8Z _?p
1 op
Assume thatv, <<v_,v, = -g———~=0
p Oz
Dp(x,y,z,t):po+pg(é’(x,y,t)+h_z) within the
water

Horizontal fluid motions (keeping leading terms):

dv,

dr
dv
dt
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Y ~

O 10p_
ot p Ox
o, __10p_
ot L Oy
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Oox
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Hydrodynamic equations for this case.




Consider a surface ¢(x,t) wave moving in the x-direction in a
channel of width b(x) and height h(x):
Continuity condition in integral form:

ijpdV+_[pV-d =0
dt 1% A b()%(h(x)_}-é'(x,t))f(
[0t b0+ Eonn)de

TN

- Mﬁ
v(x,t) % v(x+dx,t)
-
> Evaluating continuity condition:
7 o0 o o |
b(x)— = ——(h(x)b(x)v(x,t))
ot ox

Considering an increment along the propagation direction including the effects of the
continuity equation.



Some details Continuity condition in integral form:

d

ZIPdV’LJ.pV'd%:O

" A b)) (h(x)+ ¢ (x,0))%
¢ [é’(x,t) b(x)(h(x)+ (x,t))dx

v(x,t) v(x+dx,t)

(X —

dx
Here, we are assuming that p is constant

%!PdV + _[pv -dA = pjb(x)a—gdx + pja—ax(b(x)(h(x) + ;(x,t))v(x’t))dx =0

ot
= b(x)aa—é; = —a—ax(h(x)b(x)v(x,t))
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From continuity condition:

% __ 0 (h(x)b(x)v(x,t))

o ox

N\

R ENERN

[ et b(x)

hix V(X+dx’|t) Example (Problem 10.3):
b(x)=b, h(x)=xx

7 b
o¢ 0
"5 = —a((/cx)bov(x, t )) From Newton-Euler equation:
oc ov ﬂ ~ @ - _ 8_4’
E:—K(v+x§j dt ot & ox

Some details for the homework problem which is a special case.
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Example continued

o¢ ( avj 0’¢ ov o’
—=—k|v+x—| = —=—K| —+X

Ot ox ot Ot Oxot
o o 5% o 8¢
A - = = Kg| ==+

o °ox o Slar o

It can be shown that a solution can take the form:

2w
g“(x,t):CJo[—\/; cos(ar)
JKg ]
d> 1d

Note that J,(u) satisfies the equation: | —+——+1 |J (1) =0
d u du

2
u

22

2 2 2 2
xd—2+i Jo(u)zw— d—2+li Jo(u):—w—JO(u)
dx~ dx xkg\du" udu Kg

11/12/2021 PHY 711 Fall 2021 -- Lecture 33

Therefore, for u =

More details pertaining to the homework problem.
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Therefore, for 1t =—2-\Jx = 20 1

NTAGR

d* d o (d> 1d
[xWJFEjJO(u)_E[du udu]J( )———gJ , ()
dJy(u) dJ(u) o 1

Detail: =
2
P dIw( o 1) dw o |
dx? JKg Jx du 2\kg xx

2
Therefore: xd—2+i Jy(u)= o d’J o)  dJ(w) o 1
dx”  dx kg du’ du 2k \/_

d*J, (u) aJy(u) 1
Kg

du’ du u
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Example continued

ot’ Oox

2(()\/;

Check:

Jrz

11/12/2021

a%:,(g[a_éﬂ 4’]

:>§’(x,t)=CJo£ﬁ

Ox?

]cos(a)t)

~w’CJ, 20Vx cos(wt)=kg i+x CJ,
ox  ox°
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20)\/—
Jig

]cos(a)t)

Continued.
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¢(x,0) 1
0.81

0.61

0.4

0.2

0

-0.2-
-0.4-

11/12/2021

C(x,t)=0CJ, [2—60\/;}05(@)

N

A 3\/;) JO( x)
oo e

Vo X/ edo L 300~ 200

X
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Continued.
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Imagine watching the waves at a beach — can you visualize
the configuration for the surface wave pattern to approximation
this situation?

a. Long flat beach

b. Beach in which average water level increases

c. Beach in which average water level decreases
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A simplier example:

NEBN

222N

v(x,t)

A

dx b6y

as _

ot

11/12/2021

[ext)  bx)—>=

Continuity condition:

og 0
ot Ox
v(x+dx,t)

(X —

Special case, where b and h are constant --
For constant b and /:

0

= —h—(v(x,t))

ox
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(h(x)b(x)v(x,t))

A simpler example.
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Example with l/)_%ﬂd h constant -- continued

a5 dg(x,y,t)/dt
V(X7y’t) > ZO-

v(x+dx,y+dy,t)

Continuity condition for flow of incompressible fluid:

0
% +hV-v=0
ot
. . ov
From horizontal flow relations: = =—gV{
t
. . 0°¢ )
Equation for surface function: P ghV-¢ =0
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Considering the surface height.
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For uniform channel:

Surface wave equation:

2
(th —c’V( =0 c’ = gh

More complete analysis finds:

¢ =Etanh(kh)  where k = 27
k A

11/12/2021 PHY 711 Fall 2021 -- Lecture 33

For the simple case, we find the wave equation for the surface height.

In the following

slides, we will find a more complete solution depends on the wavelength the of surface

wave.
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More details: -- recall setup --

and surface h+{(x,y,t)

Consider a container of water with average height h

Po

JUNJRMAMRNMH\N\UWVWJM/*JM/‘
Q:;:.-;LA.A o e NQ\.-"\A oy

e i e

e e P e
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Some details for the more general case.
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Equations describing fluid itself (without boundaries)

Euler's equation for incompressible fluid:

dv ov ov \%
—V=—+V-VV=—+V(%V2)+VX(VXV)Z—VU——p
dt ot ot P
Assume that Vxv=0 (irrotational flow) = v=-VO®

2

:V(—ag+ 1\»2+U+£J:O
ot o,

oD o .
=>-——+5+U+ P _ constant (within the fluid)

ot yo,
For the same system, the continuity condition becomes

V.v=-Vd=0
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Considering the case of irrotational flow.
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Within fluid: 0<z<h+¢
oo |,
5 Tt g(z—h)=constant  (We have absorbed p,
R in “constant”)
-V'o=0
Atsurface: z=h+( with ¢ =& (x,,1)
d¢ _og  _og  0¢
——=—+4+y ——+vyv —=—  wherev._=v_ (x,v,h+,t
d o e oy o Ve (B0 E1)
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Considering the equations within the wave and at the surface.
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Full equations:
Within fluid: 0<z<h+(

_o® +2v* + g(z—h) = constant (We have absorbed p,
ot in “constant”)
V@ =0

Atsurface: z=h+¢ with ¢ = (x,,1)
ac_oc e

——+v —— wherev._ =v_ (x,y,h+,t
o ox oy oy = Ve (%0554 1)

Linearized equations:
For 0<z<h+(: —%f+g(z—h):0 -V =0

6 _9% _

dt at vZ(xﬁth—i_é/’t)

Atsurface: z=h+¢

oD (x, y, h+¢ 1)
- =0
Py +g¢
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Taking the linear limit.
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For simplicity, keep only linear terms and assume that
horizontal variation is only along x:

(& &
For OSZSh'i‘é/I V(D:(g-i‘y]q)(x,Z,f):O

Consider and periodic waveform: ®(x,z,t) = Z(z)cos(k(x—ct))
2
=|—-k*|Z(2)=0
(dz2 ] (2)
Boundary condition at bottom of tank: v_(x,0,7)=0
dz
: R

dz

(0)=0 Z(z) = Acosh(kz)
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Solution for the linear equations.
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For simplicity, keep only linear terms and assume that
horizontal variation is only along x — continued:
oD (x,h+

£,t)

Atsurface: z=h+¢ a—gzvz(x,h+§,t):_
ot Oz

_6CD(x,h+cf,t)+g§:O

sinh(k (h+¢))

Acosh(k(h + g)) Cos(k(x B Ct))(k ¢’ - gk cosh(k(h + é))
. g sinh(k(h+¢))
ok cosh(k(h+¢))
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=C

ot
~ 82(1)(xa,hz+;’,t)+g ol :_82CD(x,hz+§,t)_gGCD(x,h+§,t):O
t ot ot oz
For  ®(x,(h+¢),t) = Acosh(k(h+¢))cos(k(x —ct))

jo
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An expression for c.
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For simplicity, keep only linear terms and assume that
horizontal variation is only along x — continued:

,_gsinh(k(h+¢) g
© Tk cosh(k(h+ &)k tanh(k(h+¢)

2r
Assuming ¢ <<h: ¢ =& tanh(kh) A=—
k k
=
11/12/2021 PHY 711 Fall 2021 -- Lecture 33 26

Evaluating c as a function of wavelength.
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For simplicity, keep only linear terms and assume that
horizontal variation is only along x — continued:

¢ z%tanh(kh) For A>>h, ¢’ ~ gh

®(x,z,t) = Acosh(kz)cos(k(x —ct))

_100(x,h+¢,t)  k

£(x,t) 2 Acosh(kh)sin(k(x—ct))
ot g

Note that for A >> h, ¢* = gh

(solutions are consistent with previous analysis)
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Form of the surface wave form.
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Introducing the equations beyond the linear approximation that we will cover next time.
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