PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWEF in Olin 103

Plan for Lecture 34: Chapter10in F & W

Surface waves
« Summary of linear surface wave solutions

 Non-linear contributions and soliton solutions
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In this lecture, we will continue analyzing surface waves in water including the special non-
linear soliton solutions.



This material is covered in Chapter 10 of
your textbook using similar notation.
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Fri, 11/12/2021 |[Chap. 10 Surface waves in fluids

Mon, 11/15/2021||Chap. 10 Surface waves in fluids; soliton solutions
Wed, 11/17/2021 ||Chap. 11 Heat conduction

Fri, 11/19/2021 Presentations I

Mon, 11/22/2021 Presentations IT

Wed, 11/24/2021 Thanksgiving

Fri, 11/26/2021 Thanksgiving

Mon, 11/29/2021||Chap. 12 Viscous effects on hydrodynamics

Wed, 12/01/2021|/Chap. 1-12 Review

Fri, 12/03/2021 |[Chap. 1-12 Review
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Schedule.




Sign up will be available after class --

Schedule for Friday, November 19, 2021

Time

Name

Topic

10:00-10:15

10:15-10:30

10:30-10:45

Schedule for Monday, November 22, 2021

Time

Name

Topic

10:00-10:15

10:15-10:30

10:30-10:45
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PHYSICS

Ph.D. DEFENCE

“Metal Halide Perovskite:
Innovations in Applications
and Processing”

Metal halide perovskites [MHPs) are an exciting class of
materials that have been a fopic of great interest in material
science and semiconductor research. These materials possess
intriguing properties, such as cost-effective processing. high
chargs camier mobilities. band gap tunability. and ionic
conduction. With such a wide aray of properties, MHPs have
shown that they can be used in a variety of electronic
devices. There is much to learn about MHPs, both in terms of
improving device performance and in developing cost-
effective and nonhazardous processing MHP components.
These studies focus on understanding MHPs in the context of
device applications and on processing technigques for MHPs.

We have successfully reduced the contact resistance in 2D
perovskite transistors by chemically treating the surface of
both the electrodes and the diglectic. We further found that
the application of a chemical barrier layer between the
electrodes and the perovskite inhibits detimental chemical
reactions at the electrode/perovskite interface. resulting in
the lowest reperted value for a 2D bottormn-gate, bottom-

merdmet rehectalling messekits BT e irmeemand Hha

2:30 PM ZSR-404
TUESDAY
L]

NOVEMBER 16, 2021

Colin Tyznik
Mentor: Dr. Oana Jurchescu
Department of Physics
Wake Forest University

Public Presentation - 2:30 pm
ZSR Library Auditorium and Zoom
(followed by Private Defense)*
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Consider a container of water with average height h and
surface h+{(x,y,t)

Atmospheric pressure p, is in equilibrium at the surface

Po
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Reference system and notation.



Euler's equation for incompressible fluid:

dv _ Vp VU Vp For irrotational flow -- v=-V®

T applied - = -

dt P P . . . oD p
Continuity equation within the fluid ~ ineanized equation: V| ===+ g(z=h+ =0
op

a—+V-(pv)=0 = Vv=0 Atsurface: z=h+¢g —62+g§'+&=0
t ot 0
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Summarizing the linear analysis.



Keep only linear terms and assume that horizontal variation is
only along x: i )
0 0

For OSZSh'i'é’Z V2®=(g+§]®(x,z,t)20

Consider and periodic waveform: ®(x,z,t) = Z(z)cos(k(x —ct))
2
= (d—z—szZ(z) =0
dz
Boundary condition at bottom of tank: v_(x,0,¢)=0
dZ

=—(0)=0 Z(z) = Acosh(kz)
“ o o0 (x,h+ 1)
At surface: z=h+¢ —=vz(x,h+§,t):—
ot 0z
oD (x,h t
Also: _00(xhte, )+g§+&:o
ot Yo,
O*D(x,h+C ¢ 0 O*D(x,h+C ¢ oD (x,h+{,t
I A W i) AT B G 50 I
ot ot ot 0z
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(o)

Continue analysis of linear equations.



Velocity potential:  ®(x,z,t) = Acosh(kz)cos (k(x — ct))
At surface:  @(x,(h+¢),1) = Acosh(k(h+¢))cos(k(x—ct))

sinh(k(h +¢ ))
cosh(k(h+¢))

Acosh(k(h + é’)) cos(k(x — ct))(kzc2 — gk

o8 sinh(k(h+¢)) g anh(kh)
k cosh(k(h+¢)) &

Note that this solution represents a pure plane wave. More
likely, there would be a linear combination of wavevectors k.
Additionally, your text considers the effects of surface
tension. In this lecture, we will focus on the effects of the
non-linear effects of Euler and continuity equations.
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Consistent analysis of the wave speed.



Surface waves in an incompressible fluid

General problem
including /

non-linearitie

h
Within fluid: 0<z<h+<{
o |,

—E+5v +g(z—h)=constant O =D(x,y,z,t)
~V® =0 v=v(x,y,z,t)=-VO(x,,z,t)
At surface: z=h+¢ with { = ((x,y,t)

O
d_§=6_§+vX6_§+vy6_§=_M where v, =v,_ (x,y,h+{,t)
dt ot Ox oy 0z il ’ ’
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Returning to the full problem with non-linearities.
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Some relationships at surface --

Atsurface: z=h+{ with ¢ =¢ (x, ,1)

EZ%JFVX%JFV % _ 00er.z0) where v, =v, (x,y,h+(,1)
dt ot ox oy oz e 8% 2y

Note that v_(x,y,h+¢,t) = %

wave phase :t1/T= 0000

From wikipedia
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e
H B

Further simplifications; assume trivial y - dependence

D = D(x,z,1) ¢ = (x,1)
Within fluid : 0<z<h+¢
At surface : vz(x,Z:h+§,t):—a£:£
0z dt
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Specializing to motion along the x direction and surface direction in the z direction.
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Non-linear effects in surface waves:

N e Y Y
e e e e e e ™ e e e e e e e ™
h R e b T Ty
A e A A AT A VP ras P e T e T T e e
) e et et et et e e et gl W et et e et ol el el et et ey et el el
z=0

Dominant non-linear effects = soliton solutions
3n, x—ct
h 2h

gh 1o
wherec= [—— =~ h|1+—
= h V& T2

¢ (x,t) =1, sech’ 1, = constant
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Answer that we will find for the soliton solution.
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Detailed analysis of non-linear surface waves
[Note that these derivations follow Alexander L. Fetter and
John Dirk Walecka, Theoretical Mechanics of Particles and
Continua (McGraw Hill, 1980), Chapt. 10.]

We assume that we have an incompressible fluid: p = constant
Velocity potential: ®(x,z,¢); v(x,z,t)=-VD(x,z,t)

The surface of the fluid is described by z=h+{(x,t). It is
assumed that the fluid is contained in a structure
(lake, river, swimming pool, etc.) with a structureless
bottom defined by the z = 0 plane and filled to an
equilibrium height of z = h.
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Summary of assumptions for our analysis.
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Defining equations for ®(x,z,t) and {(x,t)
where 0 <z < h+{(x,1)
Continuity equation:

0’D(x,z,t) 0°D(x,z,t)

2 + 2 -

ox 0z

Bernoulli equation (assuming irrotational flow) and gravitation
potential energy

_a(xnn 1 (acb(x,z,r)jz+(6<D(x,z,t>j2 v g(z—h)=0
ot Ox 0z ¢ o
7 o
V v,

X

Viv=0 = 0
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Working through the equations within water.
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. o0D(x,z,t) N 0D (x,2,t) 05 (x,1) 8((x,z‘)|

Boundary conditions on functions —

Zero velocity at bottom of tank:

od(x,0,t) 0
0z '
Consistent vertical velocity at water surface
d 0
vz(x,z,t)| » :—C: = V-V§+—§
=hedt ot
9, 0
- 9%, %
ox Ot

=0

oz ox ox o |y
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Boundary effects at the bottom of the channel and at the surface.
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Analysis assuming water height z is small relative to
variations in the direction of wave motion (x)
Taylor’s expansion about z = O:
2 22 313 4 A4
O(x.z.0) ~ D(x,0.0) + 222 (1,0.0) + 2P Z 00 z 00
Oz 2
Note that the zero vertical velocity at the bottom suggest
that to a good approximation, that all odd derivatives
0'd (x.0.1) vanish from the Taylor expansion. In addition,
oz
the Laplace equation allows us to convert all even
derivatives with respect to z to derivatives with respect to x.
oD z? O’D z* 0’ zt o'd
D(x,z,t) ~ CD(x,O,t)—i—za—%,t)+7§(x,0,t)+3— £ (00,04

4! oz*

2 2
N 0 (I)(xz,z,t) N 0 (I)(xz,z,t) _0
ox oz 2 3D 2 o'

11/15/2021 PHY 711 Fall 2021 -- Lecture 34

87(36,0,1)4‘;?(%0,1) +zy(%0,f)'“

(x,0,0) -

z
Modified Taylor's expansion: ®(x,z,t) = ®(x,0,t) —— x,0,) +— X
y p (x,2,1) = D(x,0,7) 28x2( )4!8x4(

aOat)”
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Here we start a number of steps to analyze the leading terms in the linearities.

case we perform a Taylor’s expansion about z=0 at the bottom of the channel.

In this
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Check linearized equations and their solutions:
Bernoulli equations --
Bernoulli equation evaluated at z = 2 + ' (x,7)

SRR L g =0

Consistent vertical velocity at z = A+ (x,1)
0D(x,z,1) 0L (x,1)|

oz o oy

Using Taylor's expansion results to lowest order

=0

o0t L OO0 _ (D) (k) D00

oz ox’ ot ot
: 0*®(x,0,t 0*D(x,0,t
Decoupled equations: ;(;5 1) gh (;xz ).
X

=>linear wave equation with ¢?=gh
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ot

—gé’(x,t)

Checking lowest order (linear) term.
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Analysis of non-linear equations --

Bernoulli equation evaluated at surface:

2 A2 4 A4
z-0°D z' 0D
DO(x,z,t) = DO(x,0,t) —— x,0,1)+— x,0,7)---
(x,2,1) = D(x,0,7) 2axz( ) 4!8)64( )
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oD (x,z,t) 1|(0D(x,z,0)) (0D(x,z,0)Y
Sd al R LD ) =0.
ot +2K o j +( oz ] res(x)
z=h+{
Consistency of surface velocity
_0D(x,z,1) N 0D (x,2,t) 0 (x,t) 8§(x,t)| _0
oz Ox ox ot il

Representation of velocity potential from Taylor’s expansion:

Back to non-linear equations using Taylor’s expansion.
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Analysis of non-linear equations -- keeping the lowest
order nonlinear terms and include up to 4th order
derivatives in the linear terms. Let ¢@(x,7) = ©(x,0,7)

Approximate form of Bernoulli equation evaluated at surface: z =/ + ¢

op, (0 2[(%} ((h+§)—¢J

+ =0
o 2 o ax 8¢

o9 WD, a¢j2
— | +g¢ =0.
o | 2 oon (8x &
Approximate form of surface velocity expression :

[(h+c:( r))af]—%g—f—%f

These equations represent non-linear coupling of @#(x,z) and {(x,?).
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Systematic keeping/limiting terms in non-linearity and in high order derivatives.  The
highlighted equations are the coupled equations that we will analyze.



Coupled equations: —

op W ¢ 1(a¢j2
— | +g¢ =0.
o " 2o Talar) T8

09 Ko o
((h+:( 0 j o,

Traveling wave solutions with new notation:
u=x—ct  Px0)=yw) and (x,0)=nu)

Note that the wave “speed” ¢ will be consistently
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determined

dy(w) ch’d’ 2w)  1(dz@) ? ~

¢ du 2 du’ 2( du j +en(u)=0.

da d}((u) h3 d475(u) dﬂ(u) 3
((h+ n(u)—— ] o o =0.

Decoupling the equations.
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Integrating and re- arranging coupled equations

2 13
(Arw) e &) 1 dz@) o
du 2 du’ 2 du
] g h2 m 1 n2 g hzg " g2 2
=—n+— — ~—— —— _——
X AR 2C(;c) ey

d}((u)j h3dﬂc(u) o dnw)
h+ =0.
(( 17(u)) P I
3 43
:»(hm)dl(”) KXW | ey =0
du 6 du
Now we can express M: ' interms of 77:
u
o 8, M &
d cT7 2c 7 26377

PHY 711 Fall 2021 -- Lecture 34
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Analysis continued.
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Integrating and re-arranging coupled equations — continued --

Expressing modified surface velocity equation in terms of n(u):

g hg g ) kg
h+ —2pn— " +—=n"+cn=0
( 77)[ CU 2077 20377j 6c77 n

3
= [1-2 —in"—%(Hg—hzj T=
C 3c C 2c
hg n 3 2
=>|1-— () ——n"(u)——|n(u)| =0.
> |1 =" (w) 2h[n( )]

Note: ¢’ =gh+..
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More derivations.
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Solution of the famous Korteweg-de Vries equation

Modified surface amplitude equation in terms of n
hg h 3 >
= 1--= ——n"(u) - — =0.
( . jn(u) A O [17(w)]

Soliton solution

3n, x—ct
x,t) =n(x—ct)=n, sech’| ,[ =2
¢ (x,0)=n( ) =1, (‘/h 2h]
gh Un .
c= ~.Jeh|1+— where 7, is a constant
V- h V8 ( Zhj To
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Finally arriving at the famous equation and the famous soliton solution.

24



Steps to solution

( j (u)— 17"(u) ~ —[ﬂ(u)] =0.

hg 770 h "
Let 1- 2=, ﬂ(u) n"(u) - [77( )] =

2h

Integrate wrt # and assume solution vanishes for u — o

Mo 2 h? 2 I 5
— — — — :0
EYR (u) U (u) YA ()

7™ (w) = %nz(u)(% )

47 12 Z\f 33 du :>77(”)=—770
_ h 3
77(770 77) cosh? ‘/—%u
4n’
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Multiply equation by 7'(u) 2; [770 7 (u) - 77'2( )——77 (u )j

25

More details.
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3n, x—ct
) =n(x—ct)=n, sech’| [
¢ (x,t)=n(x—ct)=1, e

Two soliton solutions with different amplitudes --

11/15/2021 PHY 711 Fall 2021 -- Lecture 34
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Visualization
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New variables:

Standard Korteweg-de Vries equation
3

6—7_7 + 6778—7_7 + a—_z =0.

ot ox Ox

Soliton solution:

n(x,t)= g sech’ {g(f = ﬂ?)}.
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p=2n, Xx= ii, and ¢ = 3
\2h & \ 2% 25,1

Relationship to “standard” form of Korteweg-de Vries equation

27

Some notational manipulations.
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More details
Modified surface amplitude equation in terms of 7 :

hg )/ 3 2
( —C—zjﬂ(u)—?ﬂ (“)—E[ﬂ(u)] =0.

M _y_8h. Oon__ dn. On_dn
du

Some identities: —==1-=-; ;
c ot du ox
Derivative of surface amplitude equation:
770 J h2 m 3 '
—n'-—n"-—nn'=0.
; n 3 n 7 nn
Expression in terms of x and #:

chor 3¢ K ox
Expression in terms of x and 7 :

3
8_77+6776_77+8_77

— =0.
ot o&x X
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More details.
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Summary

Soliton solution

3n, x—ct
x,t)=n(x—ct)=n, sech’| ,[—<
¢ (x,t)=n( ) =17, Uk 2hj
gh N .
c= |[—=——=./gh|1+— where 1S a constant
\1=7,/ g( 2hj T
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Summary.

29
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John Scott Russell and the solitary wave

Over one hundred and fifty years ago, while conducting
experiments to determine the most efficient design for canal
boats, a young Scottish engineer named John Scott Russell (1808-
1882) made a remarkable scientific discovery. As he described it
in his "Report on Waves": (Report of the fourteenth meeting of
the British Association for the Advancement of Science, York,
September 1844 (London 1845), pp 311-390, Plates XLVII-LVII).

mi https://www.macs.hw.ac.uk/~chris/scott russell.html

I was observing the motion of a boat which was rapidly drawn along a narrow
channel by a pair of horses, when the boat suddenly stopped - not so the mass of
water in the channel which it had put in motion; it accumulated round the prow of
the vessel in a state of violent agitation, then suddenly leaving it behind, rolled
forward with great velocity, assuming the form of a large solitary elevation, a
rounded, smooth and well-defined heap of water, which continued its course
along the channel apparently without change of form or diminution of speed. I
followed it on horseback, and overtook it still rolling on at a rate of some eight or
nine miles an hour, preserving its original figure some thirty feet long and a foot
to a foot and a half in height. Its height gradually diminished, and after a chase of
one or two miles I lost it in the windings of the channel. Such, in the month of
August 1834, was my first chance interview with that singular and beautiful
phenomenon which I have called the Wave of Translation".

(Cet passage en francais)

This event took place on the Union Canal at Hermiston, very close to the Riccarton campus of
Heriot-Watt University, Edinburgh.
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First observer of the soliton phenomenon.
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Photo of canal soliton http://www.ma.hw.ac.uk/solitons/
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Historic realization of the soliton wave in a channel.
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