PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin 103

Plan for Lecture 34: Chapter 10 in F & W

Surface waves

- Summary of linear surface wave solutions
- Non-linear contributions and soliton solutions

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

1

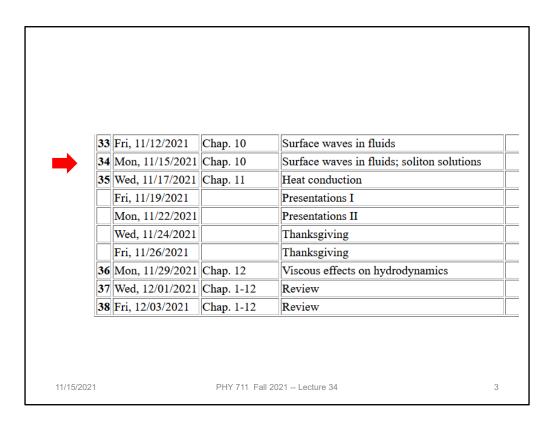
In this lecture, we will continue analyzing surface waves in water including the special non-linear soliton solutions.

This material is covered in Chapter 10 of your textbook using similar notation.

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

2



Schedule.

Sign up will be available after class --

Schedule for Friday, November 19, 2021

Time	Name	Торіс
10:00-10:15		
10:15-10:30		
10:30-10:45		

Schedule for Monday, November 22, 2021

Time	Name	Торіс
10:00-10:15		
10:15-10:30		
10:30-10:45		

11/15/2021 PHY 711 Fall 2021 -- Lecture 34

PHYSICS Ph.D. DEFENCE

2:30 PM ZSR-404

TUESDAY

•

NOVEMBER 16, 2021

"Metal Halide Perovskite: Innovations in Applications and Processing"

Metal halide perovskites (MHPs) are an exciting class of materials that have been a topic of great interest in material science and semiconductor research. These materials posses intriguing properties, such as cost-effective processing, high charge carrier mobilities, band gap tunability, and ionic conduction. With such a wide array of properties, MHPs have shown that they can be used in a variety of electronic devices. There is much to learn about MHPs, both in terms of improving device performance and in developing cost-effective and nonhazardous processing MHP components. These studies focus on understanding MHPs in the context of device applications and on processing techniques for MHPs.

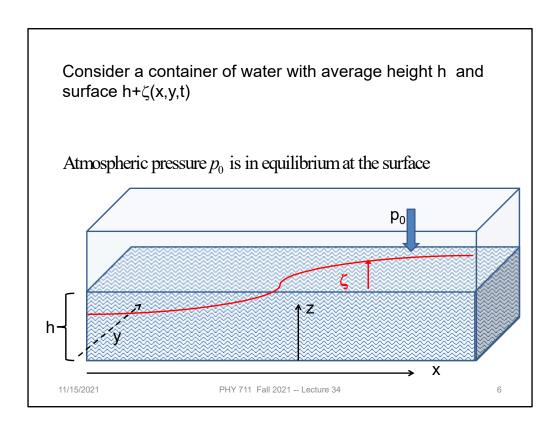
We have successfully reduced the contact resistance in 2D perovskite transistors by chemically treating the surface of both the electrodes and the dielectric. We further found that the application of a chemical barrier layer between the electrodes and the perovskite inhibits detrimental chemical reactions at the electrode/perovskite interface, resulting in the lowest reported value for a 2D bottom-gate, bottom-contact networstalling a responsible ETI We improved the

Colin Tyznik Mentor: Dr. Oana Jurchescu Department of Physics Wake Forest University

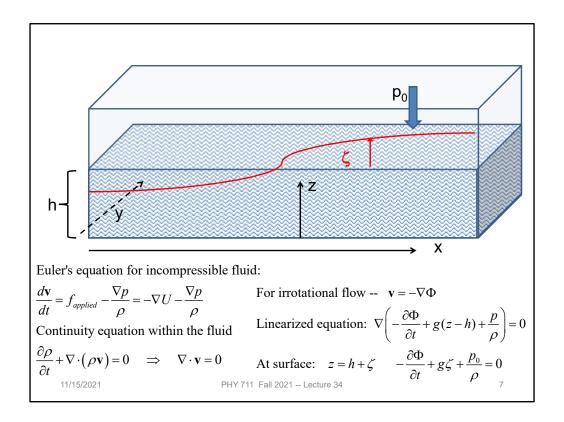
Public Presentation - 2:30 pm ZSR Library Auditorium and Zoom (followed by Private Defense)*

11/15/2021

PHY 711 Fall 2021 -- Lecture 34



Reference system and notation.



Summarizing the linear analysis.

Keep only linear terms and assume that horizontal variation is only along x:

For
$$0 \le z \le h + \zeta$$
: $\nabla^2 \Phi = \left(\frac{\partial^2}{\partial z^2} + \frac{\partial^2}{\partial x^2}\right) \Phi(x, z, t) = 0$

Consider and periodic waveform: $\Phi(x, z, t) = Z(z)\cos(k(x-ct))$

$$\Rightarrow \left(\frac{d^2}{dz^2} - k^2\right) Z(z) = 0$$

Boundary condition at bottom of tank: $v_z(x,0,t) = 0$

$$\Rightarrow \frac{dZ}{dz}(0) = 0 \qquad Z(z) = A\cosh(kz)$$
At surface: $z = h + \zeta$
$$\frac{\partial \zeta}{\partial t} = v_z \left(x, h + \zeta, t \right) = -\frac{\partial \Phi\left(x, h + \zeta, t \right)}{\partial z}$$
Also:
$$-\frac{\partial \Phi\left(x, h + \zeta, t \right)}{\partial t} + g\zeta + \frac{p_0}{\rho} = 0$$

$$\Rightarrow -\frac{\partial^2 \Phi\left(x, h + \zeta, t \right)}{\partial t^2} + g\frac{\partial \zeta}{\partial t} = -\frac{\partial^2 \Phi\left(x, h + \zeta, t \right)}{\partial t^2} - g\frac{\partial \Phi\left(x, h + \zeta, t \right)}{\partial z} = 0$$
PHY 711 Fall 2021 – Lecture 34

Continue analysis of linear equations.

Velocity potential:
$$\Phi(x,z,t) = A \cosh(kz) \cos(k(x-ct))$$

At surface: $\Phi(x,(h+\zeta),t) = A \cosh(k(h+\zeta)) \cos(k(x-ct))$
 $A \cosh(k(h+\zeta)) \cos(k(x-ct)) \left(k^2c^2 - gk\frac{\sinh(k(h+\zeta))}{\cosh(k(h+\zeta))}\right) = 0$
 $\Rightarrow c^2 = \frac{g}{k} \frac{\sinh(k(h+\zeta))}{\cosh(k(h+\zeta))} \approx \frac{g}{k} \tanh(kh)$

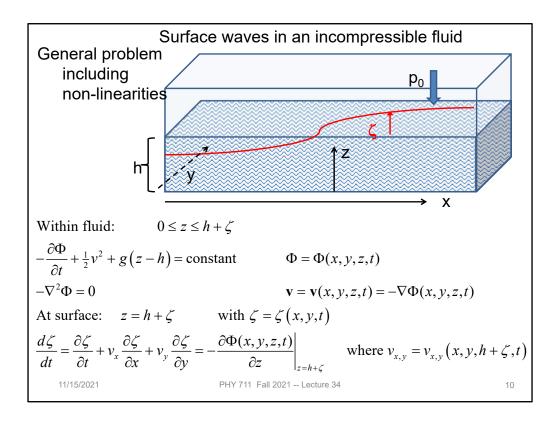
Note that this solution represents a pure plane wave. More likely, there would be a linear combination of wavevectors *k*. Additionally, your text considers the effects of surface tension. In this lecture, we will focus on the effects of the non-linear effects of Euler and continuity equations.

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

9

Consistent analysis of the wave speed.



Returning to the full problem with non-linearities.

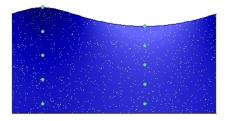
Some relationships at surface --

At surface:
$$z = h + \zeta$$
 with $\zeta = \zeta(x, y, t)$

$$\frac{d\zeta}{dt} = \frac{\partial \zeta}{\partial t} + v_x \frac{\partial \zeta}{\partial x} + v_y \frac{\partial \zeta}{\partial y} = -\frac{\partial \Phi(x, y, z, t)}{\partial z} \bigg|_{z=h+\zeta} \quad \text{where } v_{x,y} = v_{x,y} \left(x, y, h + \zeta, t \right)$$

Note that $v_z(x, y, h + \zeta, t) = \frac{d\zeta}{dt}$

wave phase : t / T = 0.000

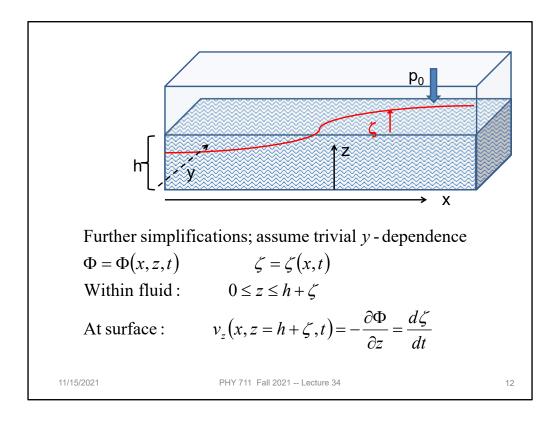


From wikipedia

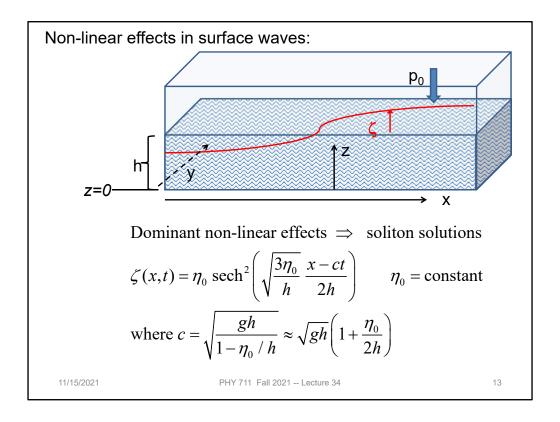
11

11/15/2021

PHY 711 Fall 2021 -- Lecture 34



Specializing to motion along the x direction and surface direction in the z direction.



Answer that we will find for the soliton solution.

Detailed analysis of non-linear surface waves

[Note that these derivations follow Alexander L. Fetter and John Dirk Walecka, *Theoretical Mechanics of Particles and Continua* (McGraw Hill, 1980), Chapt. 10.]

We assume that we have an incompressible fluid: ρ = constant Velocity potential: $\Phi(x,z,t)$; $\mathbf{v}(x,z,t) = -\nabla \Phi(x,z,t)$

The surface of the fluid is described by $z=h+\zeta(x,t)$. It is assumed that the fluid is contained in a structure (lake, river, swimming pool, etc.) with a structureless bottom defined by the z=0 plane and filled to an equilibrium height of z=h.

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

14

Summary of assumptions for our analysis.

Defining equations for $\Phi(x,z,t)$ and $\zeta(x,t)$

where
$$0 \le z \le h + \zeta(x,t)$$

Continuity equation:

$$\nabla \cdot \mathbf{v} = 0 \quad \Rightarrow \quad \frac{\partial^2 \Phi(x, z, t)}{\partial x^2} + \frac{\partial^2 \Phi(x, z, t)}{\partial z^2} = 0$$

Bernoulli equation (assuming irrotational flow) and gravitation potential energy

$$-\frac{\partial \Phi(x,z,t)}{\partial t} + \frac{1}{2} \left[\left(\frac{\partial \Phi(x,z,t)}{\partial x} \right)^{2} + \left(\frac{\partial \Phi(x,z,t)}{\partial z} \right)^{2} \right] + g(z-h) = 0.$$

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

15

Working through the equations within water.

Boundary conditions on functions -

Zero velocity at bottom of tank:

$$\frac{\partial \Phi(x,0,t)}{\partial z} = 0.$$

Consistent vertical velocity at water surface

$$\begin{split} v_{z}(x,z,t)\big|_{z=h+\zeta} &= \frac{d\,\zeta}{dt} = \mathbf{v}\cdot\nabla\,\zeta + \frac{\partial\,\zeta}{\partial t} \\ &= v_{x}\,\frac{\partial\,\zeta}{\partial x} + \frac{\partial\,\zeta}{\partial t} \\ \Rightarrow &- \frac{\partial\Phi(x,z,t)}{\partial z} + \frac{\partial\Phi(x,z,t)}{\partial x}\,\frac{\partial\,\zeta(x,t)}{\partial x} - \frac{\partial\,\zeta(x,t)}{\partial t}\Big|_{z=h+\zeta} = 0 \end{split}$$

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

16

Boundary effects at the bottom of the channel and at the surface.

Analysis assuming water height z is small relative to variations in the direction of wave motion (x) Taylor's expansion about z = 0:

$$\Phi(x,z,t) \approx \Phi(x,0,t) + z \frac{\partial \Phi}{\partial z}(x,0,t) + \frac{z^2}{2} \frac{\partial^2 \Phi}{\partial z^2}(x,0,t) + \frac{z^3}{3!} \frac{\partial^3 \Phi}{\partial z^3}(x,0,t) + \frac{z^4}{4!} \frac{\partial^4 \Phi}{\partial z^4}(x,0,t) \cdots$$

Note that the zero vertical velocity at the bottom suggest that to a good approximation, that all odd derivatives $\frac{\partial^n \Phi}{\partial z^n}(x,0,t)$ vanish from the Taylor expansion. In addition,

the Laplace equation allows us to convert all even

$$\Phi(x,z,t) \approx \Phi(x,0,t) + z \frac{\partial \Phi}{\partial z}(x,0,t) + \frac{z^2}{2} \frac{\partial^2 \Phi}{\partial z^2}(x,0,t) + \frac{z^3}{3!} \frac{\partial^3 \Phi}{\partial z^3}(x,0,t) + \frac{z^4}{4!} \frac{\partial^4 \Phi}{\partial z^4}(x,0,t) \cdots$$

the Laplace equation allows us to convert all even derivatives with respect to
$$z$$
 to derivatives with respect to x .

$$\Phi(x,z,t) \approx \Phi(x,0,t) + z \frac{\partial \Phi}{\partial z}(x,0,t) + \frac{z^2}{2} \frac{\partial^2 \Phi}{\partial z^2}(x,0,t) + \frac{z^3}{3!} \frac{\partial^3 \Phi}{\partial z^3}(x,0,t) + \frac{z^4}{4!} \frac{\partial^4 \Phi}{\partial z^4}(x,0,t) \cdots$$

$$\Rightarrow \frac{\partial^2 \Phi(x,z,t)}{\partial x^2} + \frac{\partial^2 \Phi(x,z,t)}{\partial z^2} = 0$$
Modified Taylor's expansion: $\Phi(x,z,t) \approx \Phi(x,0,t) - \frac{z^2}{2} \frac{\partial^2 \Phi}{\partial x^2}(x,0,t) + \frac{z^4}{4!} \frac{\partial^4 \Phi}{\partial x^4}(x,0,t) \cdots$

$$\frac{11/15/2021}{2} = \frac{11/15/2021}{2} = \frac{11/15/20}{2} =$$

Here we start a number of steps to analyze the leading terms in the linearities. case we perform a Taylor's expansion about z=0 at the bottom of the channel.

Check linearized equations and their solutions:

Bernoulli equations --

Bernoulli equation evaluated at $z = h + \zeta(x,t)$

$$-\frac{\partial \Phi(x,h,t)}{\partial t} + g\zeta(x,t) = 0$$

Consistent vertical velocity at $z = h + \zeta(x,t)$

$$-\frac{\partial \Phi(x,z,t)}{\partial z} - \frac{\partial \zeta(x,t)}{\partial t}\bigg|_{z=h+\zeta} = 0$$

Using Taylor's expansion results to lowest order

$$-\frac{\partial \Phi(x,h,t)}{\partial z} \approx h \frac{\partial^2 \Phi(x,0,t)}{\partial x^2} = -\frac{\partial \zeta(x,t)}{\partial t} \qquad -\frac{\partial \Phi(x,h,t)}{\partial t} \approx -\frac{\partial \Phi(x,0,t)}{\partial t} = -g\zeta(x,t)$$

Decoupled equations: $\frac{\partial^2 \Phi(x,0,t)}{\partial t^2} = gh \frac{\partial^2 \Phi(x,0,t)}{\partial x^2}.$

→ linear wave equation with $c^2=gh$

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

18

Checking lowest order (linear) term.

Analysis of non-linear equations --

Bernoulli equation evaluated at surface:

$$-\frac{\partial \Phi(x,z,t)}{\partial t} + \frac{1}{2} \left[\left(\frac{\partial \Phi(x,z,t)}{\partial x} \right)^{2} + \left(\frac{\partial \Phi(x,z,t)}{\partial z} \right)^{2} \right]_{z=h+\zeta} + g\zeta(x,t) = 0.$$

Consistency of surface velocity

$$-\frac{\partial \Phi(x,z,t)}{\partial z} + \frac{\partial \Phi(x,z,t)}{\partial x} \frac{\partial \zeta(x,t)}{\partial x} - \frac{\partial \zeta(x,t)}{\partial t} \bigg|_{z=h+\zeta} = 0$$

Representation of velocity potential from Taylor's expansion:

$$\Phi(x,z,t) \approx \Phi(x,0,t) - \frac{z^2}{2} \frac{\partial^2 \Phi}{\partial x^2}(x,0,t) + \frac{z^4}{4!} \frac{\partial^4 \Phi}{\partial x^4}(x,0,t) \cdots$$

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

19

Back to non-linear equations using Taylor's expansion.

Analysis of non-linear equations -- keeping the lowest order nonlinear terms and include up to 4th order derivatives in the linear terms. Let $\phi(x,t) \equiv \Phi(x,0,t)$

Approximate form of Bernoulli equation evaluated at surface: $z = h + \zeta$

$$-\frac{\partial \phi}{\partial t} + \frac{(h+\zeta)^2}{2} \frac{\partial^3 \phi}{\partial t \partial x^2} + \frac{1}{2} \left[\left(\frac{\partial \phi}{\partial x} \right)^2 + \left((h+\zeta) \frac{\partial^2 \phi}{\partial x^2} \right)^2 \right] + g\zeta = 0$$

$$\Rightarrow -\frac{\partial \phi}{\partial t} + \frac{h^2}{2} \frac{\partial^3 \phi}{\partial t \partial x^2} + \frac{1}{2} \left(\frac{\partial \phi}{\partial x} \right)^2 + g\zeta = 0.$$

Approximate form of surface velocity expression:

$$\Rightarrow \frac{\partial}{\partial x} \left((h + \zeta(x, t)) \frac{\partial \phi}{\partial x} \right) - \frac{h^3}{3!} \frac{\partial^4 \phi}{\partial x^4} - \frac{\partial \zeta}{\partial t} = 0.$$

These equations represent non-linear coupling of $\phi(x,t)$ and $\zeta(x,t)$.

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

20

Systematic keeping/limiting terms in non-linearity and in high order derivatives. The highlighted equations are the coupled equations that we will analyze.

Coupled equations:
$$-\frac{\partial \phi}{\partial t} + \frac{h^2}{2} \frac{\partial^3 \phi}{\partial t \partial x^2} + \frac{1}{2} \left(\frac{\partial \phi}{\partial x} \right)^2 + g\zeta = 0.$$

$$\frac{\partial}{\partial x} \left((h + \zeta(x, t)) \frac{\partial \phi}{\partial x} \right) - \frac{h^3}{3!} \frac{\partial^4 \phi}{\partial x^4} - \frac{\partial \zeta}{\partial t} = 0.$$
Traveling wave solutions with new notation:
$$u = x - ct \qquad \phi(x, t) = \chi(u) \qquad \text{and} \qquad \zeta(x, t) = \eta(u)$$
Note that the wave "speed" c will be consistently determined
$$c \frac{d\chi(u)}{du} - \frac{ch^2}{2} \frac{d^3 \chi(u)}{du^3} + \frac{1}{2} \left(\frac{d\chi(u)}{du} \right)^2 + g\eta(u) = 0.$$

$$\frac{d}{du} \left((h + \eta(u)) \frac{d\chi(u)}{du} \right) - \frac{h^3}{6} \frac{d^4 \chi(u)}{du^4} + c \frac{d\eta(u)}{du} = 0.$$

Decoupling the equations.

$$c\frac{d\chi(u)}{du} - \frac{ch^2}{2} \frac{d^3\chi(u)}{du^3} + \frac{1}{2} \left(\frac{d\chi(u)}{du}\right)^2 + g\eta(u) = 0.$$

$$\chi' = -\frac{g}{c} \eta + \frac{h^2}{2} \chi''' - \frac{1}{2c} (\chi')^2 \approx -\frac{g}{c} \eta - \frac{h^2 g}{2c} \eta'' - \frac{g^2}{2c^3} \eta^2$$

$$\frac{d}{du}\left((h+\eta(u))\frac{d\chi(u)}{du}\right) - \frac{h^3}{6}\frac{d^4\chi(u)}{du^4} + c\frac{d\eta(u)}{du} = 0.$$

$$\Rightarrow (h+\eta)\frac{d\chi(u)}{du} - \frac{h^3}{6}\frac{d^3\chi(u)}{du^3} + c\eta(u) = 0$$

Now we can express $\frac{d\chi(u)}{du} = \chi'$ in terms of η :

$$\chi' \approx -\frac{g}{c} \eta - \frac{h^2 g}{2c} \eta'' - \frac{g^2}{2c^3} \eta^2$$

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

22

Analysis continued.

Integrating and re-arranging coupled equations – continued --Expressing modified surface velocity equation in terms of $\eta(u)$:

$$(h+\eta)\left(-\frac{g}{c}\eta - \frac{h^2g}{2c}\eta'' - \frac{g^2}{2c^3}\eta^2\right) + \frac{h^3g}{6c}\eta'' + c\eta = 0$$

$$\Rightarrow \left(1 - \frac{gh}{c^2}\right)\eta - \frac{gh^3}{3c^2}\eta'' - \frac{g}{c^2}\left(1 + \frac{gh}{2c^2}\right)\eta^2 = 0$$

$$\Rightarrow \left(1 - \frac{hg}{c^2}\right)\eta(u) - \frac{h^2}{3}\eta''(u) - \frac{3}{2h}[\eta(u)]^2 = 0.$$

Note:
$$c^2 = gh + ...$$

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

23

More derivations.

Solution of the famous Korteweg-de Vries equation

Modified surface amplitude equation in terms of η

$$\Rightarrow \left(1 - \frac{hg}{c^2}\right) \eta(u) - \frac{h^2}{3} \eta''(u) - \frac{3}{2h} \left[\eta(u)\right]^2 = 0.$$

Soliton solution

$$\zeta(x,t) = \eta(x - ct) = \eta_0 \operatorname{sech}^2\left(\sqrt{\frac{3\eta_0}{h}} \frac{x - ct}{2h}\right)$$

$$c = \sqrt{\frac{gh}{1 - \eta_0 / h}} \approx \sqrt{gh}\left(1 + \frac{\eta_0}{2h}\right) \quad \text{where } \eta_0 \text{ is a constant}$$

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

24

Finally arriving at the famous equation and the famous soliton solution.

$$\left(1 - \frac{hg}{c^2}\right) \eta(u) - \frac{h^2}{3} \eta''(u) - \frac{3}{2h} [\eta(u)]^2 = 0.$$

Let
$$1 - \frac{hg}{c^2} \equiv \frac{\eta_0}{h}$$
 $\Rightarrow \frac{\eta_0}{h} \eta(u) - \frac{h^2}{3} \eta''(u) - \frac{3}{2h} [\eta(u)]^2 = 0.$

Multiply equation by
$$\eta'(u)$$
 $\Rightarrow \frac{d}{du} \left(\frac{\eta_0}{2h} \eta^2(u) - \frac{h^2}{6} \eta'^2(u) - \frac{1}{2h} \eta^3(u) \right) = 0$

Integrate wrt u and assume solution vanishes for $u \to \infty$

$$\frac{\eta_0}{2h}\eta^2(u) - \frac{h^2}{6}\eta^{1/2}(u) - \frac{1}{2h}\eta^3(u) = 0$$

$$\eta^{12}(u) = \frac{3}{h^3} \eta^2(u) (\eta_0 - \eta(u))$$

$$\eta^{12}(u) = \frac{3}{h^3} \eta^2(u) (\eta_0 - \eta(u))$$

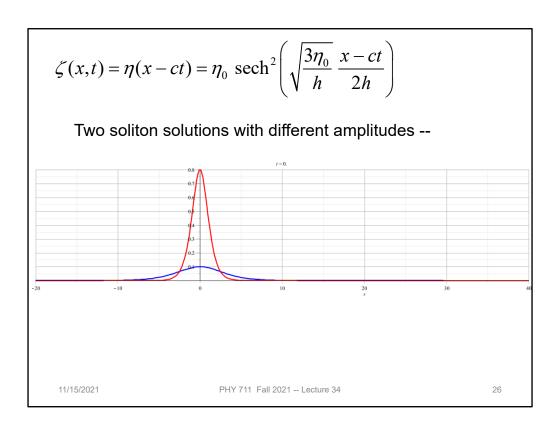
$$\frac{d\eta}{\eta (\eta_0 - \eta)^{1/2}} = \sqrt{\frac{3}{h^3}} du \qquad \Rightarrow \eta(u) = \frac{\eta_0}{\cosh^2 \left(\sqrt{\frac{3\eta_0}{4h^3}}u\right)}$$

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

25

More details.



Visualization

Relationship to "standard" form of Korteweg-de Vries equation

New variables:

$$\beta = 2\eta_0, \quad \overline{x} = \sqrt{\frac{3}{2h}} \frac{x}{h}, \quad \text{and} \quad \overline{t} = \sqrt{\frac{3}{2h}} \frac{ct}{2\eta_0 h}.$$

Standard Korteweg-de Vries equation

$$\frac{\partial \eta}{\partial \overline{t}} + 6\eta \frac{\partial \eta}{\partial \overline{x}} + \frac{\partial^3 \eta}{\partial \overline{x}^3} = 0.$$

Soliton solution:

$$\eta(\overline{x},\overline{t}) = \frac{\beta}{2} \operatorname{sech}^2 \left[\frac{\sqrt{\beta}}{2} (\overline{x} - \beta \overline{t}) \right].$$

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

27

Some notational manipulations.

More details

Modified surface amplitude equation in terms of η :

$$\left(1 - \frac{hg}{c^2}\right) \eta(u) - \frac{h^2}{3} \eta''(u) - \frac{3}{2h} \left[\eta(u)\right]^2 = 0.$$

Some identities:
$$\frac{\eta_0}{h} = 1 - \frac{gh}{c^2}$$
; $\frac{\partial \eta}{\partial t} = -c \frac{d\eta}{du}$; $\frac{\partial \eta}{\partial x} = \frac{d\eta}{du}$.

Derivative of surface amplitude equation:

$$\frac{\eta_0}{h}\eta' - \frac{h^2}{3}\eta''' - \frac{3}{h}\eta\eta' = 0.$$

Expression in terms of x and t:

$$-\frac{\eta_0}{ch}\frac{\partial \eta}{\partial t} - \frac{h^2}{3}\frac{\partial^3 \eta}{\partial x^3} - \frac{3}{h}\eta\frac{\partial \eta}{\partial x} = 0.$$

Expression in terms of \overline{x} and \overline{t} :

$$\frac{\partial \eta}{\partial \overline{t}} + 6\eta \frac{\partial \eta}{\partial \overline{x}} + \frac{\partial^3 \eta}{\partial \overline{x}^3} = 0.$$

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

28

More details.

Summary

Soliton solution

$$\zeta(x,t) = \eta(x - ct) = \eta_0 \operatorname{sech}^2\left(\sqrt{\frac{3\eta_0}{h}} \frac{x - ct}{2h}\right)$$

$$c = \sqrt{\frac{gh}{1 - \eta_0 / h}} \approx \sqrt{gh} \left(1 + \frac{\eta_0}{2h}\right) \quad \text{where } \eta_0 \text{ is a constant}$$

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

29

Summary.

John Scott Russell and the solitary wave



Over one hundred and fifty years ago, while conducting experiments to determine the most efficient design for canal boats, a young Scottish engineer named John Scott Russell (1808-1882) made a remarkable scientific discovery. As he described it in his "Report on Waves": (Report of the fourteenth meeting of the British Association for the Advancement of Science, York, September 1844 (London 1845), pp 311-390, Plates XLVII-LVII).

https://www.macs.hw.ac.uk/~chris/scott russell.html

"I was observing the motion of a boat which was rapidly drawn along a narrow channel by a pair of horses, when the boat suddenly stopped - not so the mass of water in the channel which it had put in motion; it accumulated round the prow of the vessel in a state of violent agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the form of a large solitary elevation, a rounded, smooth and well-defined heap of water, which continued its course along the channel apparently without change of form or diminution of speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or nine miles an hour, preserving its original figure some thirty feet long and a foot to a foot and a half in height. Its height gradually diminished, and after a chase of one or two miles I lost it in the windings of the channel. Such, in the month of August 1834, was my first chance interview with that singular and beautiful phenomenon which I have called the Wave of Translation".

(Cet passage en francais)

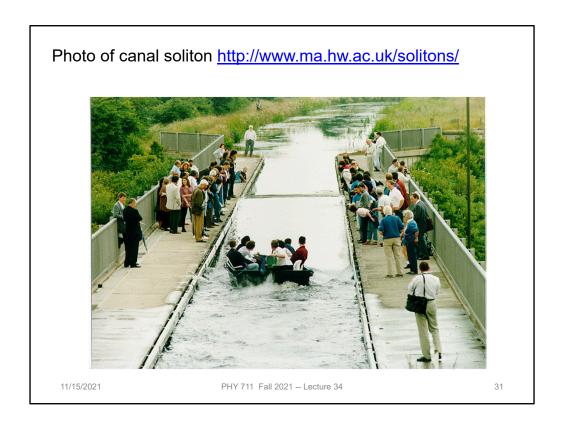
This event took place on the Union Canal at Hermiston, very close to the Riccarton campus of Heriot-Watt University, Edinburgh.

11/15/2021

PHY 711 Fall 2021 -- Lecture 34

30

First observer of the soliton phenomenon.



Historic realization of the soliton wave in a channel.