PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF Olin 103
Notes on Lecture 35: Chap. 11 in F&W

Heat conduction

1. Basic equations

2. Boundary value problems
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In today’s lecture we will take a quick look at heat transfer following Chapter 11 of your
textbook.



33 |Fri, 11/12/2021 |Chap. 10 Surface waves in fluids

34 Mon, 11/15/2021||Chap. 10 Surface waves in fluids; soliton solutions
- 35 Wed, 11/17/2021 (Chap. 11 Heat conduction

36 |Fri, 11/19/2021 ||Chap. 12 Viscous effects on hydrodynamics

;_:\/Ion‘ 11/22/2021 || lPresentations

| [Wed, 11/24/2021 [Thanksgiving

" [Fri, 11/26/2021 Thanksgiving

37 Mon, 11/29/2021||Chap. 13 Elasticity

38 Wed, 12/01/2021 [Chap. 1-13 Review

39 Fri, 12/03/2021 ||Chap. 1-13 Review
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Schedule.



Schedule for Monday, November 22, 2021

Time Name Topic
10:00-10:20 | Owen
10:20-10:40 | Manikata
10:40-11:00 | Wells
11:00-11:20 | Can
11:20-11:40 | Ramesh

11/17/2021

PHY 711

Fall 2021 -- Lecture 35




11/17/2021

4 PM Olin 101 & zoom

PHYSICS THURSDAY

CO LLOQUl UM NOVEMBER 18, 2021

“Breaking Ultrathin lonic
Wires in LNNano”

This talk is divided into two parts. : l 4 ﬁ :
\ 4

In the first part, |'ll briefly describe the Brazilian Rod rigo B Capaz Ph.D
Nanotechnology National Laboratory (LNNano), ’

an open facility for research and innovation in National Laboratory (LNNano)
the field of nanoscience and nanotechnology Brazilian Center for Research in Energy
located in Campinas, Brazil, in the same campus and Materials (CNPEM)

Director, Brazilian Nanotechnology

as 3 other National Laborataries which include Campinas, Brazil

Sirius, a 4th generation synchrotron facility.
Full Professor, Physics Institute

In the second part. I'll discuss our recent joint Federal University of Rio de Janeiro
theory/experiment work on the formation and Rio de Janeiro, Brazil

rupture of monatomic ZrO2 wires.
FHAY /11 Fan Zusi -- Lecwure 50




Conduction of heat

Jn
Enthalpy of a system at constant pressure p

non uniform temperature 7 (r,t)

mass density p and heat capacity ¢,

H = pe,(T(x.0) =T, + Hy(T,. p)

Vv
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Enthalpy as a measure of heat of a system at constant pressure in terms of the heat
capacity of the material.



Note that in this treatment we are considering a system at
constant pressure p

Notation: Heat added to system -dQ=TdS
External work done on system  --dW =—pdV
Internal energy -dE=dQ+dW =TdS — pdV

Entropy - dS

Enthalpy -dH =d(E+ pV)=TdS +Vdp

Heat capacity at constant pressure:
d oH oS
(%) (5] 5]
dr), \er ), ~\eor),
C,= j pc,d r
More generally, note that C, can depend on T; we are
assuming that dependence to be trivial.

11/17/2021 PHY 711 Fall 2021 -- Lecture 35

Some notations and concepts from thermodynamics.



Conduction of heat -- continued
H = [ pe, (T(v,0) =T, Jr + Hy(T,. p)
4

Time rate of change of enthapy:

dH OT (r.t) . -
?Z‘I[IOCPTd 7'=—£Jh'dA+;[/DQdV

heat flux heat source
LOT(nt) oo

11/17/2021 PHY 711 Fall 2021 -- Lecture 35 7

Now consider how the enthalpy of a system may change in time. The temperature may
change, there may be heat flux, and there may be a source or sink for heat flow.



Conduction of heat -- continued

oT (r,t) . .
PC,JTZ—V‘M +Pq
Empirically: j, =—k,VT (r,t)

= M = 1(V2T(r,t)+i

ot ¢,

K= ky thermal diffusivity
pe,
https://www.engineersedge.com/heat_transfer/thermal_diffusivity table 13953.htm
Typical values (m?/s)
Air 2x10°
Water  1x10”7
Copper 1x10*
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In order to relate these quantities, we need to know how enthalpy is related to
temperature and we will use the empirical relations based on observation that heat flux is
proportional to the gradient of temperature. The Thermal diffusivity coefficient is highly
dependent on the material as seen in this short list taken from the internet.



Boundary value problems for heat conduction
Ty
c /
b
ﬁ X
oT (r,t a
or(r.r) _ VT (r,1) =L
ot ¢,
, oT (r,?) ,
Without source term: — kV°T (r,t)=0
t
Example with boundary values:7'(0, y,z,t) =T (a,y,z,t) =T,
11/17/2021 PHY 711 Fall 2021 -- Lecture 35 9

Example boundary value problem which we will solve in the case that the source term is
zero.



Have you ever encountered the following equation in other
contexts and if so where?

oT (r,¢)

py — VT (r,t)=0
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Boundary value problems for heat conduction

oT

¥_wzr(r,t):o To
t ==

T(0,y,z,t)=T(a,y,z,t)=T,

8T(x,0,z,t) B 8T(x,b,z,t) _0 a X
ay 8)/ Assuming thermally

oT 0.t oT insulated boundaries

(xsyﬂ b ): (x7yﬂc’t):0
74 z

Separation of varables : T(x,y,z,¢)=T, + X(x)Y(y)Z(z)e ™
d’X , o dY .o d*Z 5

L =—a' X =Y =—yZ

“ dx’ “ dy’ p dz* 4
= —/1+/c(a2 + p’ +72): 0

Using separation of variables to solve the problem.



Boundary value problems for heat conduction

/

—

T(x,y,z,l) =T, +X(x)Y(y)Z(Z)e—/u b

a

X(0)=X(a)=0 = X(x)= sin(mzx

= —

dY (0 dY (b nr
dJ(/): di)zo :Y(y)zcos( . ]
dz(0) _dz(c)

=0 :Z(z):cos(pﬂzj
dz dz c

o] (2 ) o 25] J-o
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Some details for this case.
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Boundary value problems for heat conduction

Full solution:

nmp a C
2 2 2
| ) (5] (2
? a b c
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More details.
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Full solution:
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Full solution:

11/17/2021
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Visualization of the time evolution.
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What real system could have such a temperature
distribution?

Comment — While one can imagine that the boundary
conditions can be readily realized, the single normal mode
patterns are much harder. On the other hand, we see that
the lowest values of lambda have the longest time
constants.
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Oscillatory thermal behavior

T(z=0,1)=R Tem”

Here we assume that the
spatial variation is along z

N

oT o°’T

_— = K—

o oz

Assume: T(z,t) = gR(f(z)eiiwt)
2

(—iw) 4]

d 2
4
11/17/2021

z
Let f(z)=Ae”

iw , 0]

2 _:e3m/2 hadl

a =-—
K K

azi(l—i)\/g
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Now consider an oscillatory solutions.
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Oscillatory thermal behavior -- continued

T(z=0,t)=NR Te’”t

"\

T(Z t) ER +(1 l)z/&e—la)t

2K
w

where o =

Physical solution: ~ T(z,¢) = T,e "'’ cos (% - a)t)
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Analysis of solution.
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11/17/2021

T(z,t)=Te " cos(g - a)tj

t=0.
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Animation of solution.
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Does this expression say the temperature transmits along
the z axis?

Comment — In this case, our setup approximates trivial
variation in the x-y plane so that all variation is along z.
The spatial form along z with oscillating boundary condition
at z=0 is a result of the form of the heat equation.
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Initial value problem in an infinite domain; Fourier transform
M—szT(r,t): 0
ot
T(r,0)=/(r)

Let: T(q,t)= Id3re_i"'rT(r,t)
fla)=[dre ™ £(r)
= T(q.0)= /(a)

:%=—quf(q,l)
~~ ~~ 2
. —Kkqt
T(qat)_ T(q,O)e

Now consider an initial value problem.
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Initial value problem in an infinite domain; Fourier transform

1

(27)

T(q.t)= jd3ref"q‘rT(r,t) = T(r,t)=

~

T(q.7)=T(q,0)e ™"

T(r.0)= s [d'ge (a0

(27)
T(a.0)=f(a)=[d*re ™" f(r)

T(r,t)= Id3r'G(r—r‘,t)T(r',0)

with G(r—r',t)= ;J. d’qe' e

(27)
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jd3qeiq'r7~"(q,t)
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Using Green’s functions to analyze the results.
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Initial value problem in an infinite domain; Fourier transform

T(r,t): Id3r'G(r —r',t)T(r',O)

with G(r —r',t)z (21 )3 Id3qeiq-(r—r‘)e—xq2t
T
G(r-r't)= We”-z/(m)
TTKY
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Some details.
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Heat equation in half-space

1) _xr(e, )=

ot
T (r, t) = T'(z,t) with initial and boundary values :

T(z,t)=0 forz<0
7(z,0)=0 forz>0
70,t)=T, fort=0

z
Solution : 7 =T, erfc
s 7

where erfc(x)= %I e du
7Z' X
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For half space boundary.
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Your question -- Can you explain the erf function. I've never
really understood it. I'm not sure I've actually ever had
someone explain it. I've just seen it appear in places

before. https://dImf.nist.gov/7
§7.2(i) Error Functions @
7.2.1 erfz = %f e ™ dt, @
0
7.2.2 erfcz = %fz e dt=1-erfz @

erfe( 10x

. .
3 2 1 0 1 2 o

.s erfcx and erfc (109:),

Figure 7.3.1: Complementary error function
-3<x<3. &k
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Heat equation in half-space -- continued
8T(z,t)_ » 0T (z,1)

2 erfC(Lj - ie’(z2 )| 2

ot N Vs 4+ kt?

o z NS
—erfc]| —= | = e’ —
oz’ [%/Ej T 4 kt’
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IS

=0
ot %) -
Solution : 7T =T, erfc
" Z[NEJ
2 % e
where erfclx)=—|e™ du
(x) \/;i ‘
d erfc 2
Note that 7”d———7x
ote tha e de_J u \/;e

2
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Some details.
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0.8
0.6 \ ——_ =50
T1.0.4 =3
0.2 =007 \\\
0 2 4 6

27

10

Plots of solution at various times.
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0.8
0.6
0.4
0.2

Temperature profile
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10

Animation.
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