PHY 711 Classical Mechanics and
Mathematical Methods
10-10:50 AM MWF in Olin103

Lecture notes for Lecture 7
Chapter 3.17 of F&W

Introduction to the calculus of variations
1. Mathematical construction
2. Practical use

3. Examples
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Presenter
Presentation Notes
The topic of “calculus of variation” is covered in Chapter 3, Section 17 of your textbook.     We will study the mathematical formalism first before showing how it is useful for studying mechanical systems.


PHY 711 Classical Mechanics and Mathematical Methods

|1\|"IWF 10 AM-10:50 AM HGPL 103 [ http:ﬂwww.wfu.edufwnataliefﬂlphv?llf‘

‘Instructur: Natalie Holzwarth ‘ﬂfﬁce:.’i{l{l OPL ‘e—mail:natalie@wfu.edu ‘

Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

| [Date F&W Reading | Topic Assignment [Due

1 Mon, 8/23/2021 |Chap. 1 Introduction #1 8/27/2021

2 Wed, 8/25/2021 |Chap. 1 Scattering theory #2 8/30/2021

3|Fri, 8/27/2021 |Chap. 1 Scattering theory

4 Mon, 8/30/2021 |Chap. 1 Scattering theory #3 9/01/2021

s Wed, 9/01/2021 |Chap. 1 Summary of scattering theory [#4 9/03/2021

6 Fri, 9/03/2021 |Chap. 2 Non-inertial coordinate systems |#5 9/06/2021
- 7 Mon, 9/06/2021 |Chap. 3 Calculus of Variation #o6 9/10/2021
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Presentation Notes
There is a short problem on this subject that will be do on Friday.


PHY 711 - Assignment #

Sept. 6, 2021
Start reading Chapter 3, espectally Section 17, in Fetter & Walecka,

1. Using calculus of variations, find the equation y(x) of the shortest length "curve" which passes through the potnts (v=0, y=0) and
(=1 y79)
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.

In Chapter 3, the notion of Lagrangian dynamics is developed;
reformulating Newton’s laws in terms of minimization of related
functions. In preparation, we need to develop a mathematical

tool known as “the calculus of variation”.

Minimization of a simple function

local
inimu
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Presentation Notes
First we should review the notion of a minimum in a continuous function.     Here is a plot of V(x) showing two different minima at two different points x.


Minimization of a simple function
Given a function V' (x), find the value(s) of x

for which V' (x) is minimized (or maximized).
dv

dx

Necessary condition : 0

301
251
20
15
10-

\;'T
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We see from this plot that a conduction for a function to have a minimum at a point is that its derivative is zero at that point.      You see in this example another point where dV/dx, but there is not a minimum.      So we say the dV/dx is a necessary but not sufficient condition on having a minimum.


Functional minimization
Consider a family of functions y(x), with fixed end points

[ ( \
y(x;) =y, and y(x,) =y, and a function L| 1 y(x),ﬂ ", X .
L Y
: : : : ([ a’y )
Find the function y(x) which extremizes L U y(x),— y v, X |
X))
Necessary condition: oL =0
1
Example: y 0'6::
1,1 1
L= j\/(dx)z +@) ol | | | |
(0,0) 0 0.2 0.4 06 0.8
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Presentation Notes
The calculus of variation also searches for minima, but instead of finding a point where a function has a minimum,  we search for a functional form that minimizes an integral.


Difference between minimization of a function V(x) and
the minimization in the calculus of variation.

Minimization of a function
=2>Know V(x)  =>»Find x; such that V(x,) is a minimum.

Calculus of variation
For x, < x < x, want to find a function y(x)

/

that minimizes an integral that depends on y(x).

The analysis involves deriving and solving a differential

equation for y(x).


Presenter
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Comparison 


Functional minimization
Consider a family of functions y(x), with fixed end points

[ ( \
y(x;) =y, and y(x,) =y, and a function L| 1 y(x),ﬂ ", X .
L Y
: : : : ([ a’y )
Find the function y(x) which extremizes L U y(x),— y v, X |
X))
Necessary condition: oL =0
1
Example: y 0'6::
1,1 1
L= j\/(dx)z +@) ol | | | |
(0,0) 0 0.2 0.4 06 0.8
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The calculus of variation involves consideration of a function of a function.    Here we use L to denote such a function.


B 1-

Example: y 0'62
(L1)

o JO) J@xy (&) o]

0 02 04 06 0.8
1 dy 2 X
:_([ \/ 1+(d_j dx Sample functions :

X
1
%(X):\/; L =J‘1/1+de=1.4789
g 4x

1
y,(x) =x L =I«/1+1dx:ﬁ=1.4142
0

1
y,(x) = x* L :I\/1+4x2a’x:1.4789
0
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For this example we can write the distance along a curve between two points x=0,y=0 and x=1,y=1 as a normal integral over x as shown.


Calculus of variation example for a pure integral functions

Find the function y(x) which extremizes L({ y(x), %}, xj
X

where L({ y(x),%}, xj = j: f ({ y(x),%}, xjdx.
X | X

Necessary condition: oL =0

Atany x, let y(x) = y(x)+oy(x)

dv(x) | dy(x) | dv()

dx dx dx

Formally :

(o of ay
él—f (aij’df” (a(dy/dx)lf(dxj ax.

X

dx — -



Comment about notation concerning functional dependence
and partial derivatives

Suppose x, y, z represent independent variables that determine a function f :
We write f(x, y,z). A partial derivative with respect to x implies that we

hold y, z fixed and infinitessimally change x

(gj :1' (f(x+mayaz)_f(xayaz)j
11m

Ox Ax

Ax—0



After some derivations, we find

X
oL = |

|

-(3),

9/6/2021

4
(@yl,dy@+

9
oy

5

dx

dx —

d

|

of

a
Ol —
5(dy/dx)jx’y dx

of

Ldydx
" dx -

of

(5(@ / dX)l,y

*

d
b dx (8(dy/dx)jx’y

Note that this is a
“total” derivative
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)

dx

=0 forallx, <x<x

/

opdx =0 forallx, <x<x,

12
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Using calculus to simplify the integral.


.

“Some” derivations --
Consider the term

Xy

I

Xj

If y(x) 1s a well-defined function, then o (

xf

I

Xj

o

|

8(dy/dx)

o

g

dy/ dx)

K
K

o

dy
dx

dy
dx

)
)

|

dx

o(

dy/ dx)

X,y

dx :

Xr

dx = |

Xj

d

X

o

)

g

d

dy/ dx)

o

|

d

—0

dx Y
%

dx

g

dy/ dx)

X,y
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Some details.


* Clarification -- what 1s the meaning of the following statement:

o(2)-Ls,
dx dx

Up to now, the operator 0 1s not well defined and meant to be general.
Now let us suppose that it implies an infinitessimal difference to its function.

As an example, suppose that y(x,77) where x and 7 are independent such as

V(X,?]) X For 7]>O, and 0 <x <1 S N O
——y(x,n7) =——y(x,n) =(1+7ln(x)) x""

Note that the construction of this system is that
y(x,,n7) has the same value for all 7 and

y(x,,77) has the same value for all 7.
Example y(x,77) = x" forx; =0 and x, =1

Y, =y(0,7)=0 and y, =y(,n)=I



Note that the oy notation 1s meant to imply a general

infinitessimal variation of the function y(x)



“Some” derivations (continued)--

Xy

I

X

d

|

dx

of
[8(dy/dx)

o

5(dy/dx)

K
X,y

y

Euler-Lagrange equation:

-

9
Oy

d
Ny

_dx

of

X,y

d

- dx

of
[5(@ / dX)jx,y >

d

dx

d

of
[8(dy/dx)

dx

g

dy/dx)ly

_I_dx

K
X,y

dx

y

of
(5(@ / dX)L >

=0 forallx <x<x

f



Clarfication — Why does this term go to zero?

tod of o d of
& (8(dy/dx)]xy5y dx(a(dy/dx)]xyay -

=

(o D
(8(dy/dx)1,y5y J dx[@(dy/dx)l’yéy

tod of
= 0 - Sy d
J dx(@(dy/dx)ly s

Answer --

By construction oy(x;) =0 y(x,)=0
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Recap -- - -

il of b
oL = (ijx’dy@ﬂr [8(dy/dx)jx,y5(dxj i

| dx - .

Xy
:J' g _d g oydx =0 forallx, <x<x,
oy ).« dx|\0ldy/dx)),

dx _

= g 4 2 =0 forallx, <x<x,
oy ).« dx|\0ldy/dx)),

dx

Here we conclude that the integrand has to vanish at every
argument in order for the integral to be zero

a. Necessary?
b. Overkill?



Example: Endpoints--y(0)=0;y()=1

L

J ( )dx jf({J/(x),%},xj: \/1{

|
(%] (8(dij;dx)]x,y =0

. d[ dy | dx JO

dx >
Solution: \/1+(dy / dx)
( \
vl g Y_go K
\\/1+(dy/dx)2) dx K2

= Y= KixC y(x)=x
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Presentation Notes
Your homework problem is very similar to this.      


Example: Lamp shade shape y(x)

A= 27zj \/H(;@ dx :f[{ (x), Zi},szx\/pr(%jz

o) d of 0 y
oy ), & dx|\0ldy/dx)),

dx - -

d xdy / dx
— =0
dx[\/1+(dy/dx)2]
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Here is another example of the use of calculus of variation.


( )

d xdy / dx 0

dx| 1+ (dy/ dx)
xdy / dx
JU+(dy ) dx)
&y 1

=K,

O

2
X X
= (x)=K.—-K. In|l —+ [——1
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After these steps, the solution is found up to some constants.


General form of solution --

y(x)=K, Kh{iJr x 1}

K \K?

Suppose K, =1 and K, = 2+/3

1.2

1
0.8
0.6
0.4
0.2

0

0.5 1 15 2
X

9/6/2021 PHY 711 Fall 2021 -- Lecture 7

)

In




1.2
1 (2443
0.8 x)=In
0.6 \x+\/x
0.4
0.2
0

0.5 1 L5 2
X

dx

A= 27zj \/1+(dyj dx =15.02014144

(according to Maple)
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Evaluating results for particular boundary values.


.

Another example:
(Courtesy of F. B. Hildebrand, Methods of Applied Mathematics)

Consider all curves y(x)with »(0)=0and y(1)=1

that minimize the integral :

1 2
[ = I ((ﬂj —aszdx for constant a >0
0

Euler - Lagrange equation :
d’y

2

+ay =0

o _sinlax)
) sin(\/g)

dx



Presenter
Presentation Notes
Another example.


revens aw o fr )
Review: for f|{y(x),—¢, x|,
dx

Xr
a necessary condition to extremize I f G y(x),?},x]dx ;
| X

o d of |
gl _ 0 _
(5ij,dy dx K@(dy/dx)jxj <: Euler-Lagrange equation

dx

Note that for f [{y(x),ﬂ},xj,

dx
I (v (o \d dy+(@j
dx \ oy )dx \a(dy/dx))dx dx \ éx

(d( o dy (o a’a’yJ{@_fj
dx\o(dy/dx)))dx \o(dy/dx))dx dx \ ox

:i ,o of dy _ af Alternate Euler-Lagrange
dx oldy/dx)dx ) \ ox equation

PHY 711 Fall 2021 -- Lecture 7

9/6/2021 25


Presenter
Presentation Notes
Summary and extension.


®
Brachistochrone problem: (solved by Newton in 1696)

http://mathworld.wolfram.com/BrachistochroneProblem.html

0 A particle of weight
mg travels
frictionlessly down a
T path of shape y(x).
Y 1 What is the shape of
| the path y(x) that

~0.5-

—1-5‘; minimizes the travel
o) | | | | . | time from
0 1 2 3 y(0)=0to y(n)=-27
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Prelude to what we will cover next time.

http://mathworld.wolfram.com/BrachistochroneProblem.html

dx

dy ’
e
T= | —= j dx because Imv’ =-mgy
Xi Vi v X _2gy
1+ (dyf
dy dx Note that for the original form of
f({y(x)a_}axj:\ .
dx —y Euler-Lagrange equation:
i/f_ of  dv)_, [@j dlf L,
dx\”  O(dy/dx)dx) Oy W dx| o(dy / dx) . ,
[ ) differential equation is more complicated:
2
d | _ 0 " @ @
dx 2 1 dx d dx
-y| 1+ (dyj 2 C 4 2
—y » J
WU e ), P2
/
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Some details.


E(f_a
(

o

dx

9/6/2021
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More details.


2
y(1+(—j )—K=2a Let y=—2asin2§:a(cose—1)
dy  2asin§cosfdl

— = = dx
b __ /2_(1_1 2_61_1 2a 1
dx —Y -y 2asin® ¢

dy —J 0

NE x = [a(l-cos0)d6'= a0 —sin 0)
L 0
-y

Parametric equations for Brachistochrone:

x = a(6 —sin )
y=alcosf—1)



Parametric plot --
plot([theta-sin(theta), cos(theta)-1, theta =0 .. Pi])

0

9/6/2021 PHY 711 Fall 2021 -- Lecture 7 30



	Slide Number 1
	Slide Number 2
	Slide Number 3
	Slide Number 4
	Slide Number 5
	Slide Number 6
	Slide Number 7
	Slide Number 8
	Slide Number 9
	Slide Number 10
	Slide Number 11
	Slide Number 12
	Slide Number 13
	Slide Number 14
	Slide Number 15
	Slide Number 16
	Slide Number 17
	Slide Number 18
	Slide Number 19
	Slide Number 20
	Slide Number 21
	Slide Number 22
	Slide Number 23
	Slide Number 24
	Slide Number 25
	Slide Number 26
	Slide Number 27
	Slide Number 28
	Slide Number 29
	Slide Number 30

