

PHY 711 Classical Mechanics and Mathematical Methods 10-10:50 AM MWF in Olin103

Lecture notes for Lecture 7
Chapter 3.17 of F&W

Introduction to the calculus of variations

- 1. Mathematical construction
- 2. Practical use
- 3. Examples

PHY 711 Classical Mechanics and Mathematical Methods

MWF 10 AM-10:50 AM OPL 103 http://www.wfu.edu/~natalie/f21phy711/

Instructor: Natalie Holzwarth Office: 300 OPL e-mail: natalie@wfu.edu

Course schedule

(Preliminary schedule -- subject to frequent adjustment.)

	Date	F&W Reading	Topic	Assignment	Due
1	Mon, 8/23/2021	Chap. 1	Introduction	<u>#1</u>	8/27/2021
2	Wed, 8/25/2021	Chap. 1	Scattering theory	<u>#2</u>	8/30/2021
3	Fri, 8/27/2021	Chap. 1	Scattering theory		
4	Mon, 8/30/2021	Chap. 1	Scattering theory	<u>#3</u>	9/01/2021
5	Wed, 9/01/2021	Chap. 1	Summary of scattering theory	<u>#4</u>	9/03/2021
6	Fri, 9/03/2021	Chap. 2	Non-inertial coordinate systems	<u>#5</u>	9/06/2021
7	Mon, 9/06/2021	Chap. 3	Calculus of Variation	<u>#6</u>	9/10/2021

PHY 711 -- Assignment #6

Sept. 6, 2021

Start reading Chapter 3, especially Section 17, in Fetter & Walecka.

1. Using calculus of variations, find the equation y(x) of the shortest length "curve" which passes through the points (x=0, y=0) and (x=2, y=8).

9/6/2021

In Chapter 3, the notion of Lagrangian dynamics is developed; reformulating Newton's laws in terms of minimization of related functions. In preparation, we need to develop a mathematical tool known as "the calculus of variation".

Minimization of a simple function

Minimization of a simple function

Given a function V(x), find the value(s) of x for which V(x) is minimized (or maximized).

Necessary condition:
$$\frac{dV}{dx} = 0$$

Functional minimization

Consider a family of functions y(x), with fixed end points

$$y(x_i) = y_i$$
 and $y(x_f) = y_f$ and a function $L\left\{y(x), \frac{dy}{dx}\right\}, x$.

Find the function y(x) which extremizes $L\left\{y(x), \frac{dy}{dx}\right\}, x$.

Necessary condition: $\delta L = 0$

$$L = \int_{(0,0)}^{1,1} \sqrt{(dx)^2 + (dy)^2}$$

Difference between minimization of a function V(x) and the minimization in the calculus of variation.

Minimization of a function

→ Know V(x) → Find x_0 such that $V(x_0)$ is a minimum.

Calculus of variation

For $x_i \le x \le x_f$ want to find a function y(x)

that minimizes an integral that depends on y(x).

The analysis involves deriving and solving a differential equation for y(x).

Functional minimization

Consider a family of functions y(x), with fixed end points

$$y(x_i) = y_i$$
 and $y(x_f) = y_f$ and a function $L\left\{y(x), \frac{dy}{dx}\right\}, x$.

Find the function y(x) which extremizes $L\left\{y(x), \frac{dy}{dx}\right\}, x$.

Necessary condition: $\delta L = 0$

$$L = \int_{(0,0)}^{1,1} \sqrt{(dx)^2 + (dy)^2}$$

Example:

$$L = \int_{(0,0)}^{(1,1)} \sqrt{(dx)^2 + (dy)^2}$$

$$= \int_{0}^{1} \sqrt{1 + \left(\frac{dy}{dx}\right)^2} \, dx$$

Sample functions:

$$y_1(x) = \sqrt{x}$$

$$L = \int_{0}^{1} \sqrt{1 + \frac{1}{4x}} dx = 1.4789$$

$$y_2(x) = x$$

$$L = \int_{0}^{1} \sqrt{1+1} dx = \sqrt{2} = 1.4142$$

$$y_2(x) = x^2$$

$$L = \int_{0}^{1} \sqrt{1 + 4x^{2}} dx = 1.4789$$

Calculus of variation example for a pure integral functions

Find the function y(x) which extremizes $L\left\{y(x), \frac{dy}{dx}\right\}, x$

where
$$L\left(\left\{y(x), \frac{dy}{dx}\right\}, x\right) \equiv \int_{x_i}^{x_f} f\left(\left\{y(x), \frac{dy}{dx}\right\}, x\right) dx$$
.

Necessary condition : $\delta L = 0$

At any
$$x$$
, let $y(x) \to y(x) + \delta y(x)$

$$\frac{dy(x)}{dx} \to \frac{dy(x)}{dx} + \delta \frac{dy(x)}{dx}$$

Formally:

$$\delta L = \int_{x_i}^{x_f} \left[\left(\frac{\partial f}{\partial y} \right)_{x, \frac{dy}{dx}} \delta y + \left[\left(\frac{\partial f}{\partial (dy/dx)} \right)_{x, y} \delta \left(\frac{dy}{dx} \right) \right] \right] dx.$$

Comment about notation concerning functional dependence and partial derivatives

Suppose x, y, z represent independent variables that determine a function f: We write f(x, y, z). A partial derivative with respect to x implies that we hold y, z fixed and infinitessimally change x

$$\left(\frac{\partial f}{\partial x}\right)_{y,z} = \lim_{\Delta x \to 0} \left(\frac{f(x + \Delta x, y, z) - f(x, y, z)}{\Delta x}\right)$$

After some derivations, we find

$$\delta L = \int_{x_i}^{x_f} \left[\left(\frac{\partial f}{\partial y} \right)_{x, \frac{dy}{dx}} \delta y + \left[\left(\frac{\partial f}{\partial (dy/dx)} \right)_{x, y} \delta \left(\frac{dy}{dx} \right) \right] \right] dx$$

$$= \int_{x_i}^{x_f} \left[\left(\frac{\partial f}{\partial y} \right)_{x, \frac{dy}{dx}} - \frac{d}{dx} \left[\left(\frac{\partial f}{\partial (dy/dx)} \right)_{x, y} \right] \right] \delta y dx = 0 \quad \text{for all } x_i \le x \le x_f$$

$$\Rightarrow \left(\frac{\partial f}{\partial y}\right)_{x,\frac{dy}{dx}} - \frac{d}{dx} \left[\left(\frac{\partial f}{\partial (dy/dx)}\right)_{x,y} \right] = 0 \quad \text{for all } x_i \le x \le x_f$$

Note that this is a "total" derivative

"Some" derivations ---Consider the term

$$\int_{x_i}^{x_f} \left[\left(\frac{\partial f}{\partial (dy/dx)} \right)_{x,y} \delta \left(\frac{dy}{dx} \right) \right] dx:$$

If y(x) is a well-defined function, then $\delta \left(\frac{dy}{dx}\right) = \frac{d}{dx} \delta y$

$$\int_{x_{i}}^{x_{f}} \left[\left(\frac{\partial f}{\partial (dy / dx)} \right)_{x,y} \delta \left(\frac{dy}{dx} \right) \right] dx = \int_{x_{i}}^{x_{f}} \left[\left(\frac{\partial f}{\partial (dy / dx)} \right)_{x,y} \frac{d}{dx} \delta y \right] dx$$

$$= \int_{x_i}^{x_f} \left[\frac{d}{dx} \left[\left(\frac{\partial f}{\partial (dy/dx)} \right)_{x,y} \delta y \right] - \frac{d}{dx} \left(\frac{\partial f}{\partial (dy/dx)} \right)_{x,y} \delta y \right] dx$$

9/6/2021

*Clarification -- what is the meaning of the following statement:

$$\delta \left(\frac{dy}{dx} \right) = \frac{d}{dx} \delta y$$

Up to now, the operator δ is not well defined and meant to be general.

Now let us suppose that it implies an infinitessimal difference to its function.

As an example, suppose that $y(x,\eta)$ where x and η are independent such as

$$y(x,\eta) = x^{\eta}$$
 For $\eta > 0$, and $0 \le x \le 1$ assume $\eta > 0$

$$\frac{d}{d\eta} \frac{d}{dx} y(x,\eta) = \frac{d}{dx} \frac{d}{d\eta} y(x,\eta) = (1 + \eta \ln(x)) x^{\eta - 1}$$

Note that the construction of this system is that $y(x_i, \eta)$ has the same value for all η and $y(x_t, \eta)$ has the same value for all η .

Example
$$y(x, \eta) = x^{\eta}$$
 for $x_i = 0$ and $x_f = 1$
 $y_i = y(0, \eta) = 0$ and $y_f = y(1, \eta) = 1$
PHY 711 Fall 2021 -- Lecture 7

Note that the δy notation is meant to imply a general infinitessimal variation of the function y(x)

"Some" derivations (continued)--

$$\int_{x_{i}}^{x_{f}} \left[\frac{d}{dx} \left[\left(\frac{\partial f}{\partial (dy/dx)} \right)_{x,y} \delta y \right] - \frac{d}{dx} \left(\frac{\partial f}{\partial (dy/dx)} \right)_{x,y} \delta y \right] dx$$

$$= \left[\left(\frac{\partial f}{\partial (dy/dx)} \right)_{x,y} \delta y \right]_{x_{i}}^{x_{f}} - \int_{x_{i}}^{x_{f}} \left[\frac{d}{dx} \left(\frac{\partial f}{\partial (dy/dx)} \right)_{x,y} \delta y \right] dx$$

$$= 0 - \int_{x_{i}}^{x_{f}} \left[\frac{d}{dx} \left(\frac{\partial f}{\partial (dy/dx)} \right)_{x,y} \delta y \right] dx$$

Euler-Lagrange equation:

$$\Rightarrow \left(\frac{\partial f}{\partial y}\right)_{x,\frac{dy}{dx}} - \frac{d}{dx} \left[\left(\frac{\partial f}{\partial (dy/dx)}\right)_{x,y} \right] = 0 \quad \text{for all } x_i \le x \le x_f$$

Clarfication – Why does this term go to zero?

Answer --

By construction $\delta y(x_i) = \delta y(x_f) = 0$

Recap
$$\frac{1}{x_f} \left[\left(\frac{\partial f}{\partial y} \right)_{x, \frac{dy}{dx}} \delta y + \left[\left(\frac{\partial f}{\partial (dy/dx)} \right)_{x,y} \delta \left(\frac{dy}{dx} \right) \right] \right] dx$$

$$= \int_{x_i}^{x_f} \left[\left(\frac{\partial f}{\partial y} \right)_{x, \frac{dy}{dx}} - \frac{d}{dx} \left[\left(\frac{\partial f}{\partial (dy/dx)} \right)_{x,y} \right] \right] \delta y dx = 0 \quad \text{for all } x_i \le x \le x_f$$

$$\Rightarrow \left(\frac{\partial f}{\partial y} \right)_{x, \frac{dy}{dx}} - \frac{d}{dx} \left[\left(\frac{\partial f}{\partial (dy/dx)} \right)_{x,y} \right] = 0 \quad \text{for all } x_i \le x \le x_f$$

Here we conclude that the integrand has to vanish at every argument in order for the integral to be zero

- a. Necessary?
- b. Overkill?

Example: End points -- y(0) = 0; y(1) = 1

$$L = \int_{0}^{1} \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx \qquad \Rightarrow f\left(\left\{y(x), \frac{dy}{dx}\right\}, x\right) = \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}}$$

$$\left(\frac{\partial f}{\partial y}\right)_{x,\frac{dy}{dx}} - \frac{d}{dx} \left[\left(\frac{\partial f}{\partial (dy/dx)}\right)_{x,y} \right] = 0$$

$$\Rightarrow -\frac{d}{dx} \left(\frac{dy/dx}{\sqrt{1 + (dy/dx)^2}} \right) = 0$$

Solution:

$$\left(\frac{dy/dx}{\sqrt{1+(dy/dx)^2}}\right) = K \qquad \frac{dy}{dx} = K' \equiv \frac{K}{\sqrt{1-K^2}}$$

$$\Rightarrow y(x) = K'x + C \qquad y(x) = x$$

Example: Lamp shade shape y(x)

$$A = 2\pi \int_{x_i}^{x_f} x \sqrt{1 + \left(\frac{dy}{dx}\right)^2} dx \implies f\left(\left\{y(x), \frac{dy}{dx}\right\}, x\right) = x\sqrt{1 + \left(\frac{dy}{dx}\right)^2}$$

$$\left(\frac{\partial f}{\partial y}\right)_{x, \frac{dy}{dx}} - \frac{d}{dx} \left[\left(\frac{\partial f}{\partial (dy/dx)}\right)_{x, y}\right] = 0$$

$$\Rightarrow -\frac{d}{dx} \left(\frac{xdy/dx}{\sqrt{1 + (dy/dx)^2}}\right) = 0$$

$$x_i \ y_i$$

9/6/2021 PHY 711 Fa

$$-\frac{d}{dx}\left(\frac{xdy / dx}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}\right) = 0$$

$$\frac{xdy / dx}{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}} = K_1$$

$$\frac{dy}{dx} = -\frac{1}{\sqrt{\left(\frac{x}{K_1}\right)^2 - 1}}$$

$$\Rightarrow y(x) = K_2 - K_1 \ln \left(\frac{x}{K_1} + \sqrt{\frac{x^2}{K_1^2} - 1} \right)$$

General form of solution --

$$y(x) = K_2 - K_1 \ln \left(\frac{x}{K_1} + \sqrt{\frac{x^2}{K_1^2} - 1} \right)$$

Suppose $K_1 = 1$ and $K_2 = 2 + \sqrt{3}$

$$A = 2\pi \int_{1}^{2} x \sqrt{1 + \left(\frac{dy}{dx}\right)^{2}} dx = 15.02014144$$

(according to Maple)

Another example:

(Courtesy of F. B. Hildebrand, Methods of Applied Mathematics)

Consider all curves y(x) with y(0) = 0 and y(1) = 1that minimize the integral:

$$I = \int_{0}^{1} \left(\left(\frac{dy}{dx} \right)^{2} - ay^{2} \right) dx \quad \text{for constant } a > 0$$

Euler - Lagrange equation:

$$\frac{d^2y}{dx^2} + ay = 0$$

$$\frac{d^2y}{dx^2} + ay = 0$$

$$\Rightarrow y(x) = \frac{\sin(\sqrt{a}x)}{\sin(\sqrt{a})}$$

Review: for $f\left\{y(x), \frac{dy}{dx}\right\}, x$,

a necessary condition to extremize $\int_{0}^{\infty} f\left(\left\{y(x), \frac{dy}{dx}\right\}, x\right) dx$:

$$\left(\frac{\partial f}{\partial y}\right)_{x,\frac{dy}{dx}} - \frac{d}{dx} \left[\left(\frac{\partial f}{\partial (dy/dx)}\right)_{x,y} \right] = 0 \quad \iff \text{Euler-Lagrange equation}$$

Note that for $f\left(\left\{y(x), \frac{dy}{dx}\right\}, x\right)$,

$$\frac{df}{dx} = \left(\frac{\partial f}{\partial y}\right) \frac{dy}{dx} + \left(\frac{\partial f}{\partial (dy/dx)}\right) \frac{d}{dx} \frac{dy}{dx} + \left(\frac{\partial f}{\partial x}\right)$$

$$= \left(\frac{d}{dx} \left(\frac{\partial f}{\partial (dy/dx)}\right)\right) \frac{dy}{dx} + \left(\frac{\partial f}{\partial (dy/dx)}\right) \frac{d}{dx} \frac{dy}{dx} + \left(\frac{\partial f}{\partial x}\right)$$

$$\Rightarrow \frac{d}{dx} \left(f - \frac{\partial f}{\partial (dy/dx)} \frac{dy}{dx} \right) = \left(\frac{\partial f}{\partial x} \right)$$
 Alternate Euler-Lagrange equation

Brachistochrone problem: (solved by Newton in 1696)

http://mathworld.wolfram.com/BrachistochroneProblem.html

A particle of weight mg travels frictionlessly down a path of shape y(x). What is the shape of the path y(x) that minimizes the travel time from y(0)=0 to $y(\pi)=-2$?

$$T = \int_{x_i y_i}^{x_f y_f} \frac{ds}{v} = \int_{x_i}^{x_f} \frac{\sqrt{1 + \left(\frac{dy}{dx}\right)^2}}{\sqrt{-2gy}} dx \quad \text{because} \quad \frac{1}{2}mv^2 = -mgy$$

$$f\left(\left\{y(x), \frac{dy}{dx}\right\}, x\right) = \sqrt{\frac{1 + \left(\frac{dy}{dx}\right)^2}{-y}}$$
 Note that for the original form of Euler-Lagrange equation:

$$\frac{d}{dx}\left(f - \frac{\partial f}{\partial(dy/dx)}\frac{dy}{dx}\right) = 0$$

$$\frac{d}{dx}\left(f - \frac{\partial f}{\partial(dy/dx)}\frac{dy}{dx}\right) = 0 \qquad \left(\frac{\partial f}{\partial y}\right)_{x,\frac{dy}{dx}} - \frac{d}{dx}\left[\left(\frac{\partial f}{\partial(dy/dx)}\right)_{x,y}\right] = 0,$$

 $\frac{d}{dx} \left| \frac{1}{\sqrt{-y \left(1 + \left(\frac{dy}{dx}\right)^2\right)}} \right| = 0$

differential equation is more complicated:

$$-\frac{1}{2}\sqrt{\frac{1+\left(\frac{dy}{dx}\right)^2}{-y^3}} - \frac{d}{dx}\left(\frac{\frac{dy}{dx}}{\sqrt{-y\left(1+\left(\frac{dy}{dx}\right)^2\right)}}\right) = 0$$

$$f\left(\left\{y(x), \frac{dy}{dx}\right\}, x\right) = \sqrt{\frac{1 + \left(\frac{dy}{dx}\right)^2}{-y}}$$

$$\frac{d}{dx}\left(f - \frac{\partial f}{\partial(dy/dx)}\frac{dy}{dx}\right) = \left(\frac{\partial f}{\partial x}\right)$$

$$\Rightarrow \frac{d}{dx}\left(\frac{1}{\sqrt{-y\left(1 + \left(\frac{dy}{dx}\right)^2\right)}}\right) = 0 \quad -y\left(1 + \left(\frac{dy}{dx}\right)^2\right) = K \equiv 2a$$

$$-y\left(1+\left(\frac{dy}{dx}\right)^{2}\right) = K \equiv 2a \qquad \text{Let} \quad y = -2a\sin^{2}\frac{\theta}{2} = a(\cos\theta - 1)$$

$$-\frac{dy}{dx} = -\sqrt{\frac{2a}{-y} - 1} \qquad \qquad -\frac{1}{\sqrt{\frac{2a}{-y} - 1}} = \frac{2a\sin\frac{\theta}{2}\cos\frac{\theta}{2}d\theta}{\sqrt{\frac{2a}{2a\sin^{2}\frac{\theta}{2}} - 1}} = dx$$

$$-\frac{dy}{\sqrt{\frac{2a}{-y} - 1}} = dx$$

$$x = \int_{0}^{\theta} a(1-\cos\theta')d\theta' = a(\theta-\sin\theta)$$

Parametric equations for Brachistochrone:

$$x = a(\theta - \sin \theta)$$
$$y = a(\cos \theta - 1)$$

Parametric plot -plot([theta-sin(theta), cos(theta)-1, theta = 0 .. Pi])

