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PHY 711 Classical Mechanics and 
Mathematical Methods

10-10:50 AM  MWF in Olin103

Lecture notes for Lecture 7 
Chapter 3.17 of F&W 

Introduction to the calculus of variations

1. Mathematical construction

2. Practical use

3. Examples

Presenter
Presentation Notes
The topic of “calculus of variation” is covered in Chapter 3, Section 17 of your textbook.     We will study the mathematical formalism first before showing how it is useful for studying mechanical systems.
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Presenter
Presentation Notes
There is a short problem on this subject that will be do on Friday.
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Your questions –
From Can –

1. What kind of questions will be much easier to solve by Lagrongian than 
Newton？

From Owen –
1.  My previous understanding of the Lagrangian was that it is a 
fundamental concept in physics which, like the Hamiltonian, forms the 
basis for more advanced topics. Is this true? And if, so what to what other 
topics is the Lagrangian applied?

Comments –
These are both very good questions dealing with the motivation and hierarchy 
of the Lagrangian formalism.      
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Comments on the motivation and hierarchy of the Lagrangian
formalism.

• I would guess that there have been lots of formulations of the equations of 
motion throughout the history of mathematics and science and the main 
ones that have survived are Newton’s “laws”,  Lagrangian formalism, and 
Hamiltonian formalism.     Each are mathematically sound and physical 
verified and useful for analysis in various context.

• Lagrangian and Hamiltonian formalisms are more advanced because the 
mathematics is a little bit “harder” than Newton’s formulation.    As long as
they are correctly applied, they should describe the same physics.   On the 
other hand, there are situations (like in quantum mechanics) where the 
Lagrangian and Hamiltonian formulations are preferred/needed.

• Once you become comfortable with the Lagrangian formulation, you may 
find that it is easier to use in analysis, particularly in complicated coordinate 
systems or when there are constraints on the motion.

• For now, a key motivation for the Lagrangian formalism is that it opens 
several powerful additional mathematical tools to the analysis of motion.

• Your textbook starts with a “derivation” of the Lagrangian, but we will first
develop the abstract mathematical tools first.
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According wikipedia –
Joseph-Louis Lagrange (born 
Giuseppe Luigi Lagrangia or 
Giuseppe Ludovico De la 
Grange Tournier; 25 January 
1736 – 10 April 1813), also 
reported as Giuseppe Luigi 
Lagrange or Lagrangia, was 
an Italian mathematician and 
astronomer, later naturalized 
French. He made significant 
contributions to the fields of 
analysis, number theory, and 
both classical and celestial 
mechanics.
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According to Wikipedia –
Leonard Euler (April 7, 1707-September 18,
1783) Swiss mathematician, physicist, 
astronomer, geographer, logician and 
engineer who founded the studies of graph 
theory and topology and made pioneering 
and influential discoveries in many other 
branches of mathematics such as analytic 
number theory, complex analysis, and 
infinitesimal calculus. He introduced much of 
modern mathematical terminology and 
notation, including the notion of a 
mathematical function. He is also known for 
his work in mechanics, fluid dynamics, optics, 
astronomy and music theory. 
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In Chapter 3, the notion of Lagrangian dynamics is developed; 
reformulating Newton’s laws in terms of minimization of related 
functions.  In preparation, we need to develop a mathematical 
tool known as “the calculus of variation”.

Minimization of a simple function

0=
dx
dV

local 
minimum

global 
minimum

Presenter
Presentation Notes
First we should review the notion of a minimum in a continuous function.     Here is a plot of V(x) showing two different minima at two different points x.
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Minimization of a simple function

0=
dx
dV

local 
minimum

global 
minimum

0    :conditionNecessary 

.maximized)(or  minimized is )(for which 
 of  value(s) thefind ,)(function  aGiven 

=
dx
dV

xV
xxV

Presenter
Presentation Notes
We see from this plot that a conduction for a function to have a minimum at a point is that its derivative is zero at that point.      You see in this example another point where dV/dx, but there is not a minimum.      So we say the dV/dx is a necessary but not sufficient condition on having a minimum.
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Functional minimization of an integral relationship
Consider a family of functions ( ), with fixed end points

( )  and ( )  and an integral form ( ), , .

Find the function ( ) which extremizes ( ), , .

Necessary

i i f f

y x

dyy x y y x y L y x x
dx

dyy x L y x x
dx

  = =     
  
    

 condition:    0Lδ =

( ) ( )
( )
∫ +=
1,1

0,0

22

:Example

dydxL

Presenter
Presentation Notes
The calculus of variation also searches for minima, but instead of finding a point where a function has a minimum,  we search for a functional form that minimizes an integral.
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Difference between minimization of a function V(x) and 
the minimization in the calculus of variation.

Minimization of a function
Know V(x)      Find x0 such that V(x0) is a minimum.

Calculus of variation
For  want to find a function ( )
that minimizes an integral that depends on ( ).
The analysis involves deriving and solving a differential
equation for  ( ).

i fx x x y x
y x

y x

≤ ≤

Presenter
Presentation Notes
Comparison 
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Functional minimization of an integral relationship
Consider a family of functions ( ), with fixed end points

( )  and ( )  and an integral form ( ), , .

Find the function ( ) which extremizes ( ), , .

Necessary

i i f f

y x

dyy x y y x y L y x x
dx

dyy x L y x x
dx

  = =     
  
    

 condition:    0Lδ =

( ) ( )
( )
∫ +=
1,1

0,0

22

:Example

dydxL

Presenter
Presentation Notes
The calculus of variation also searches for minima, but instead of finding a point where a function has a minimum,  we search for a functional form that minimizes an integral.
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( ) ( )
( )

(1,1)
2 2

0,0

21

0

Example:

   1

L dx dy

dy dx
dx

= +

 = +  
 

∫

∫

4789.141           )(

4142.1211            )(

4789.1
4
11            )(

:functions Sample

1

0

22
2

1

0
2

1

0
1

=+==

==+==

=+==

∫

∫

∫

dxxL xxy

dxL xxy

dx
x

L xxy

Presenter
Presentation Notes
For this example we can write the distance along a curve between two points x=0,y=0 and x=1,y=1 as a normal integral over x as shown.
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Calculus of variation example for a pure integral functions

0     :conditionNecessary 

.,),(,),(   where

,),( extremizes which )(function   theFind
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Comment about notation concerning functional dependence 
and partial derivatives
Suppose , ,  represent independent variables that determine a function :
We write ( , , ).  A partial derivative with respect to  implies that we
hold ,  fixed and infinitessimally change 

x y z f
f x y z x

y z x
f
x

 ∂

 ∂ 0,

, , ) ( , ,( )lim
z xy

x y z f x y z
x

f x
→∆

+ =  ∆
∆ −
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After some derivations, we find

( )

( )

( ) fi
yx

dx
dyx

fi

x

x yx
dx
dyx

x

x yx
dx
dyx

xxx
dxdy

f
dx
d

y
f

xxxdxy
dxdy

f
dx
d

y
f

dx
dx
dy

dxdy
fy

y
fL

f

i

f

i

≤≤=



















∂

∂
−








∂
∂

⇒

≤≤=

































∂

∂
−








∂
∂

=










































∂

∂
+








∂
∂

=

∫

∫

 allfor     0  
/

 allfor    0
/

    

/

,,

,,

,,

δ

δδδ

Note that this is a
“total” derivative

Presenter
Presentation Notes
Using calculus to simplify the integral.
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“Some” derivations --

( )

( ) ( )

,

, ,

Consider the term

:
/

If ( ) is a well-defined function, then  

/ /

f

i

f

i

x

x x y

x

x x y x y

f dy dx
dy dx dx

dy dy x y
dx dx

f dy f ddx y
dy dx dx dy dx dx

δ

δ δ

δ δ

  ∂       ∂     
  = 
 

      ∂ ∂    =       ∂ ∂          

∫

∫

( ) ( )
, ,

                                              

      = 
/ /

f

i

f

i

x

x

x

x x y x y

dx

d f d fy y dx
dx dy dx dx dy dx

δ δ
     ∂ ∂   −      ∂ ∂       

∫

∫

*

Presenter
Presentation Notes
Some details.



9/6/2021 PHY 711  Fall 2021 -- Lecture 7 18

Note that the     notation is meant to imply a general
 infinitessimal variation of the function ( )

y
y x

δ
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Clarification -- what is the meaning of the following statement:

  

Up to now, the operator   is not well defined and meant to be general.
Now let us suppose that it implies an infinite

dy d y
dx dx

δ δ

δ

  = 
 

( ) 1

)  are indepe
s

ndent 
e

such
 

 a
simal differ nce to its function.

As an example,  suppose that ( , where  and 
( ,      1       

s
) 0,  and 0

)

r

) n

 Fo

1

 

( ( l (, ),

x
d

y

d

y x x
x

d d d x x
d dx x d

x

y x y x

η

η

η η

η η

η η η
η η

−

= > ≤ ≤

= = +

*

Note that the construction of this system is that
, ) has the same value for all  and
, ) has the same value for all . 

Example ( , )  for 0 and 1
(0, ) 0    and    (1, ) 1

(
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y x x x x
y y y
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y x
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“Some” derivations (continued)--

( ) ( )

( ) ( )

, ,

, ,

 
/ /
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/ /

     =                  0                
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( ), ,

Euler-Lagrange equation:

  0    for all 
/ i f

dyx x ydx

f d f x x x
y dx dy dx

   ∂ ∂ ⇒ − = ≤ ≤    ∂ ∂     
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( ) ( )
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Clarfication – Why does this term go to zero?

Answer --
By construction ( ) ( ) 0i fy x y xδ δ= =
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Recap --
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Here we conclude that the integrand has to vanish at every 
argument in order for the integral to be zero
a. Necessary?
b. Overkill?
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( )

( )
0
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Presenter
Presentation Notes
Your homework problem is very similar to this.      Actually stopped at this slide.    Will continue discussion on Wednesday.
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y
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Presenter
Presentation Notes
Here is another example of the use of calculus of variation.
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( )

( )
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1 1
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Presenter
Presentation Notes
After these steps, the solution is found up to some constants.
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2

2 3( ) ln
1

y x
x x

 +
=  

+ − 

2

1
1 1

2 2

General form of solution --

( ) ln 1x xy x K K
K K

 
= − + −  

 

1 2  1  S anduppose  2 3 KK = +=
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2

2 3( ) ln
1

y x
x x

 +
=  

+ − 

22

1

2 1 15.02014144

                                            (according to Maple)

dyA x dx
dx

π  = + = 
 ∫

Presenter
Presentation Notes
Evaluating results for particular boundary values.
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Another example:
(Courtesy of F. B. Hildebrand, Methods of Applied Mathematics)

( ) ( ) ( )

( )
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xaxy

ay
dx

yd

adxay
dx
dyI

yyxy
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sin)(

0
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0constant for      

:integral  theminimizethat 
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==

∫

Presenter
Presentation Notes
Another example.
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Euler-Lagrange equation

Alternate Euler-Lagrange 
equation

Presenter
Presentation Notes
Summary and extension.
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Brachistochrone problem:   (solved by Newton in 1696)
http://mathworld.wolfram.com/BrachistochroneProblem.html

A particle of weight 
mg travels 
frictionlessly down a 
path of shape y(x). 
What is the shape of 
the path y(x) that 
minimizes the  travel 
time from
y(0)=0 to y(π)=-2 ? 

Presenter
Presentation Notes
Prelude to what we will cover next time.

http://mathworld.wolfram.com/BrachistochroneProblem.html


9/6/2021 PHY 711  Fall 2021 -- Lecture 7 31
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Euler-Lagrange equation:
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Presenter
Presentation Notes
Some details.
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More details.



Parametric equations for Brachistochrone:

( )
( )1cos

sin
−=

−=
θ

θθ
ay
ax
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dx
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plot([theta-sin(theta), cos(theta)-1, theta = 0 .. Pi])
Parametric plot --

y

x
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